
 

 
HOGERE ZEEVAARTSCHOOL ANTWERPEN 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Master thesis for the obtention of  Promotor: Joeri Horvath 

the title of Co-promotor: Olivier Schalm 

Master in Nautical Sciences Academic year: 2020-2021

Designing a portable and autonomous 
air pollution measuring instrument 

Cyril Dewez 





i 

Foreword 
This Master's thesis is one of the conditions for obtaining the Master's degree in Nautical 

Sciences at the Antwerp Maritime Academy. 

Since the start of these studies, I have wished to study air pollution onboard merchant 

navy ships during my Bachelor and Master’s thesis. Mr Joeri Horvath and Mr Olivier Schalm 

allowed me to create my own air pollution measuring instrument for that purpose. I started 

working on this project without any specific prior knowledge. As the design progressed, I learned 

to code in Python, studied sensor communications protocols, connected all the sensors 

individually with a breadboard, traced electronic schematics, drew my own printed circuit board 

with KiCad, solder connectors, designed flowcharts with draw.io, made 220V connections… 

I warmly thank Mr Olivier Schalm for the opportunity to organise a trip to Cuba in this 

context which has been cancelled at the last minute due to the Coronavirus pandemic. I would 

also like to thank Mr Gustavo Carro for his help setting up my development environment. I also 

thank my father, Luc, for the many tips and invaluable assistance during the construction of the 

Seacanairy case. Finally, I would like to thank the Antwerp Maritime Academy for funding the 

project. 

VERSION 2.0 





 

iii 

Abstract 
This thesis proposes the design of an instrument that measures air quality onboard 

merchant marine vessels. The device must fulfil the following boundary conditions: (1) be able 

to measure sulphur oxides, nitrogen oxides, carbon oxides, ozone, particulate matter, 

temperature and humidity, (2) the air supply to the sensors must go through the tubing and a 

pump to facilitate calibration in a later stage, (3) the instrument must be (water)tight, and (4) the 

instrument must be transportable. 

The realization of the measuring device begins with an individual study of potential 

sensors. After the selection of the necessary sensors, the electronic connections have been 

studied, the required connectors were purchased, and the software to operate and collect data 

through a central computer written. Writing and installing the software on the central computer 

requires creating a development environment on an additional stand-alone computer. This step 

is studied for each sensor on a case-by-case basis. Finally, a dedicated software program 

synchronizes and groups the data in a shared database when all the sensors are operational. 

Continuously, upgrades were made, including a printed circuit board that simplifies the electric 

cables. 

Finally, all the components of the measuring device are installed in a watertight Pelican 

Storm Case to form a single transportable unit. The suitcase is fitted with three aluminium 

plates, on which selected components are attached (e.g., pump, pipes, transformer, central unit, 

USB socket). 

During the building process of the portable and watertight measuring device, several 

problems have been encountered: it is hard to find the correct component in the vast amount 

of possibilities on the market, the selected components are not always compatible with each 

other, the documentation of sensors is not always clear, errors can quickly occur with software 

and wires. This dissertation provides lists of components, wiring schematics, software flowcharts, 

and Python code examples that can be reproduced when someone wants to build a similar device. 





 

v 

Résumé 
Ce mémoire propose la conception d’un instrument permettant la mesure de la qualité 

de l’air à bord des navires de la marine marchande. L’appareil se doit de répondre aux exigences 

suivantes : (1) être capable de mesurer les oxydes de soufre, les oxydes d’azote, les oxydes de 

carbone, l’ozone, les particules fines, la température et l’humidité, (2) l’arrivée d’air aux capteurs 

doit se faire via un système de tubes et d’une pompe de manière à faciliter la calibration dans le 

futur, (3) l’instrument doit être étanche (à l’eau), et (4) le tout doit être transportable. 

La réalisation de l’instrument de mesure débute par une étude individuelle des capteurs. 

Après la sélection des senseurs nécessaires, les connections électriques sont étudiées, les 

connecteurs nécessaires achetés, et l’on écrit le logiciel conçu pour opérer et récupérer les 

données par le biais d’un ordinateur central. La rédaction et l’installation du logiciel sur 

l’ordinateur central nécessite la création d’un environnement de développement sur un 

ordinateur de bureau additionnel. Cela est étudié au cas-par-cas pour chaque capteur. 

Finalement, lorsque tous les capteurs sont opérationnels, un logiciel synchronise et regroupe les 

données dans une base de données commune. Au fur et à mesure de la conception, le système 

est amélioré, tel que la création d’un circuit imprimé pour remplacer tous les câbles électriques. 

Finalement, tous les composants de l’instrument de mesure sont installés dans un Pelican 

Storm Case (valise) afin de former une seule unité transportable. La valise est composée de trois 

plaques en aluminium sur lesquels les composants sont fixés (par exemple, la pompe, les 

transformateurs, l’ordinateur central, une prise USB). 

Tout au long de la conception de l’instrument de mesure, plusieurs problèmes ont été 

rencontrés : il est difficile de trouver les bons composants parmi les nombreuses possibilités sur 

le marché, les pièces sélectionnées ne sont pas toujours compatibles les unes avec les autres, et 

des erreurs peuvent rapidement survenir dans le logiciel et les câblages. Cette dissertation fournit 

des listes de composants, des schémas électriques, des algorithmes de logiciels, et des exemples 

de code Python, permettant à quiconque de construire un instrument de mesure similaire. 





 

vii 

Table of content 
Foreword .......................................................................................................................................... i 

Abstract .......................................................................................................................................... iii 

Résumé ............................................................................................................................................. v 

Table of content .............................................................................................................................vii 

Table of figures ...............................................................................................................................xi 

Table of tables ............................................................................................................................... xiv 

List of abbreviations ....................................................................................................................... xv 

Introduction .................................................................................................................................... 1 

Chapter 1 The Sensors of the Seacanairy ...................................................................................... 3 

1 E+E Elektronik EE894 CO2 sensor ....................................................................................... 4 

1.1 Sensor communication and wiring ................................................................................. 5 

1.2 Compatible wire and sockets .......................................................................................... 7 

1.3 Software function list ...................................................................................................... 8 

1.4 Software schematic ........................................................................................................ 12 

1.4.1 General procedure for reading measurements ..................................................... 12 

1.4.2 Procedure for reading and writing bytes inside the sensor custom memory ....... 12 

1.5 Air measurement and data reading timing ................................................................... 14 

1.6 Faced issues during the development ........................................................................... 16 

1.6.1 Consecutive I²C write and read ............................................................................ 16 

1.6.2 Addition of other I²C devices to the central computer ........................................ 17 

1.6.3 inability to manually trigger a measurement ......................................................... 18 

1.6.4 Continuous indication of temperature error on the status byte .......................... 18 

1.6.5 Checksum error during measurement readings ................................................... 19 

2 OPC-N3 particulate matter sensor ....................................................................................... 19 

2.1 Data returned by the sensor .......................................................................................... 21 

2.2 Sensor communication and wiring ............................................................................... 22 

2.3 Software function list .................................................................................................... 23 

2.4 Software schematic ........................................................................................................ 29 

2.4.1 SPI communication initiation ............................................................................... 29 

2.4.2 Histogram reading ................................................................................................. 29 



 
Table of content 

viii 

2.4.3 Perform a particulate matter measurement .......................................................... 30 

2.5 Faced issues .................................................................................................................... 33 

2.5.1 Simultaneous reading and writing of data ............................................................ 33 

2.5.2 Sensor Slave Select line wiring .............................................................................. 34 

2.5.3 Frequency conflict between the OPC-N3 SPI and the GPS UART .................... 34 

2.6 Interference between M&C air pump and SPI communication ................................. 35 

2.6.1 Isolation of the pump from the 220V line via a noise reducer ............................ 37 

2.6.2 Increasing the power supply capacity .................................................................... 37 

2.6.3 Addition of a rest period between starting the pump and the first 
communication with the sensor .......................................................................................... 38 

3 The 4-AFE gas sensors board from Alphasense ................................................................... 38 

3.1 Wiring of the 4-AFE board and the Analog to Digital Converter (ADC) .................. 39 

3.2 Software function list .................................................................................................... 40 

3.3 Analogic signal noise reduction .................................................................................... 45 

3.4 Calibration ..................................................................................................................... 45 

4 The GPS receiver .................................................................................................................. 45 

4.1 Wiring of the GPS receiver ........................................................................................... 46 

4.2 Software function list .................................................................................................... 46 

4.3 Faced issues .................................................................................................................... 47 

4.3.1 Frequency conflict between the OPC-N3 SPI and the GPS UART .................... 47 

4.3.2 Random UART port opening problem ................................................................ 47 

5 Sensirion Mass Flow Meter .................................................................................................. 49 

6 The RTC (real-time clock) – DS3231 .................................................................................. 50 

6.1 Faced issues .................................................................................................................... 50 

6.1.1 I2C pull-up resistors ............................................................................................... 50 

6.1.2 Integration on the PCB ......................................................................................... 50 

Chapter 2 Combining components into a measuring device ..................................................... 53 

1 Building the device into a transportable suitcase ................................................................ 54 

1.1 Three aluminium plates in the casing .......................................................................... 56 

1.2 The bottom plate ........................................................................................................... 56 

1.3 The cover plate in the case lid ....................................................................................... 57 

1.4 The top plate.................................................................................................................. 58 

1.5 Drilling the plate to fix it on the frame ........................................................................ 58 

2 Connecting all sensors with tubes ....................................................................................... 59 

2.1.1 The use of PTFE tubes ........................................................................................... 62 

2.1.2 Air pump ................................................................................................................ 63 

2.1.3 The particulate matter sensor (OPC-N3) box ....................................................... 64 



 
HZS 

ix 

2.1.4 The CO2 sensor box............................................................................................... 66 

2.1.5 The Sensirion mass flow meter ............................................................................. 67 

2.1.6 The Alphasense 4-AFE gas sensor ......................................................................... 67 

2.2 The electrical connection of all hardware components ............................................... 67 

2.2.1 Electric noise on the 220V line ............................................................................. 69 

3 Central computer ................................................................................................................. 70 

3.1 The Raspberry Pi ........................................................................................................... 70 

3.2 The Analog to Digital Converter .................................................................................. 71 

3.3 Printed Circuit Board (PCB) ......................................................................................... 71 

3.3.1 General procedure for designing a PCB ............................................................... 73 

3.3.2 Seacanairy wiring ................................................................................................... 76 

3.3.3 The connection between the Analog to Digital Converter (ADC) and the custom 
circuit board .......................................................................................................................... 76 

3.3.4 Tips for a successful printed circuit ....................................................................... 77 

Chapter 3 Setting up the development environment on a stand-alone computer ..................... 79 

1 Set up the development environment on a personal computer ......................................... 80 

1.1 Development software – PyCharm ............................................................................... 80 

1.2 New project creation ..................................................................................................... 81 

1.3 Git repository and GitHub account ............................................................................. 81 

1.4 Commit and Push files to GitHub ............................................................................... 83 

1.5 Libraries installation ...................................................................................................... 84 

1.6 Connect to the Raspberry Pi using TeamViewer ......................................................... 85 

1.7 Transfer files from or to the Raspberry Pi .................................................................... 86 

2 Set up the development environment on the Seacanairy central computer ...................... 86 

2.1 Update the Raspberry Pi ............................................................................................... 86 

2.2 The virtual environment on the Raspberry Pi .............................................................. 87 

2.2.1 Create a Virtual Environment ............................................................................... 87 

2.2.2 Virtual environment activation ............................................................................. 87 

2.2.3 Activate the virtual environment in Thonny Python IDE ................................... 88 

2.3 Install Python libraries on the Raspberry Pi ................................................................. 89 

2.4 Testing code on the Raspberry Pi ................................................................................. 90 

2.4.1 Copy-pasting in Thonny Python IDE ................................................................... 90 

2.4.2 TeamViewer File Transfer and python3 in console ............................................. 91 

3 Console tip and tricks .......................................................................................................... 92 

4 Raspberry Pi password .......................................................................................................... 92 

Chapter 4 Software of the Seacanairy .......................................................................................... 93 

1 Overall Seacanairy software structure .................................................................................. 93 



 
Table of content 

x 

2 Information display and logging functions ......................................................................... 96 

3 Settings page ......................................................................................................................... 98 

3.1 Choice of file format ..................................................................................................... 98 

3.2 Available settings ........................................................................................................... 99 

4 MySQL Database ................................................................................................................ 101 

5 Global Seacanairy script ..................................................................................................... 104 

5.1 Manual operation through the touchscreen ............................................................... 106 

5.2 Autostart at boot ......................................................................................................... 106 

6 Software files and folders ................................................................................................... 107 

6.1 List of files .................................................................................................................... 107 

Conclusion .................................................................................................................................. 111 

 List of files ............................................................................................................ 113 

 Case panels dimensions ....................................................................................... 115 

 Schematic of the Seacanairy wiring ..................................................................... 117 

 Seacanairy PCB .................................................................................................... 119 

 CO2.py ................................................................................................................. 121 

 OPCN3.py ............................................................................................................ 134 

 AFE.py .................................................................................................................. 154 

 GPS.py .................................................................................................................. 168 

 flow.py .................................................................................................................. 176 

 database.py ........................................................................................................... 183 

 seacanairy_settings.yaml ...................................................................................... 190 

 AFE calibration .................................................................................................... 192 

 set_system_time.sh ............................................................................................... 193 

 Graph from the measuring device ....................................................................... 195 

1 Temperature ....................................................................................................................... 195 

2 Particulate matter ............................................................................................................... 196 

3 Gas sensors ......................................................................................................................... 197 

4 Air flow ............................................................................................................................... 198 

5 SO2 peak when a nearby lawn tractor passes .................................................................... 199 

Bibliography ................................................................................................................................ 200 

 



 

xi 

Table of figures 
Figure 1 Picture of the CO2 sensor ........................................................................................... 5 

Figure 2 I²C communication sentence ...................................................................................... 7 

Figure 3 CO2 sensor connectors ............................................................................................... 7 

Figure 4 General procedure for reading CO2 sensor measurements flowchart ..................... 13 

Figure 5 Reading and writing inside sensor custom memory flowchart ................................ 14 

Figure 6 CO2 sensor sampling timing ..................................................................................... 16 

Figure 7 Schematic of I²C write and read sentences without any STOP bit in between ...... 17 

Figure 8 I²C write and read sentences without any STOP bit in between (Python code) ..... 17 

Figure 9 Pictures of the OPC-N3 ............................................................................................. 20 

Figure 10 Schématic of the connection of multiple SPI devices to the same Master .......... 23 

Figure 11 Flowchart of the SPI communication initiation ................................................... 31 

Figure 12 Flowchart of the histogram reading ...................................................................... 32 

Figure 13 Flowchart of getting data from the OPC-N3 sensor ............................................. 33 

Figure 14 Power supply of the central computer (Raspberry Pi and printed circuit) and 1 

Farat capacitance .................................................................................................................. 37 

Figure 15 Schematic representation of the Alphasense 4-AFE wiring ................................. 40 

Figure 16 Velleman VMA430 and U-BLOX NEO-7M chip ................................................ 46 

Figure 17 ls -l /dev* on Raspberry Pi, UART configuration ................................................ 48 

Figure 18 Switching UARTs on the Raspberry Pi (config.txt) .............................................. 49 

Figure 19 RTC DS3231 chip ................................................................................................. 50 

Figure 20 Relocation of the DS3231 socket to solve the PCB design problem ................... 51 

Figure 21 The case of the Seacanairy ..................................................................................... 54 

Figure 22 Pelican Storm Case iM2720 before/after ............................................................. 56 

Figure 23 Bottom plate fixing bolts (and the four bolts) ...................................................... 57 

Figure 24 Picture of the bottom plate and its components .................................................. 57 

Figure 25 Cover plate (in the case lid), back and front side ................................................. 58 

Figure 26 Top plate, back and front side ............................................................................... 58 



 
Table of figures 

xii 

Figure 27 Schematic of the inboard piping system ............................................................... 60 

Figure 28 Picture of the piping system inside the Pelican case ............................................. 60 

Figure 29 Air pump in its initial situation (on the left), unbolted, and rotated (on the right)

 64 

Figure 30 Operation of the needle valve of the M&C air pump ......................................... 64 

Figure 31 The OPC-N3 box ................................................................................................... 65 

Figure 32 Connection of the tube system to the OPC-N3 via a Swagelok connector and 

four threaded rods ................................................................................................................ 65 

Figure 33 Fixing the OPC-N3 box to the bottom case panel ............................................... 66 

Figure 34 The CO2 box .......................................................................................................... 67 

Figure 35 Shaping of the M&C connector and assembly of waterproof connectors .......... 67 

Figure 36 Picture of the 220V derivation box (on the left), and the Tokin noise filter (on 

the right) ............................................................................................................................... 69 

Figure 37 Schematic of the wiring of the Tokin noise filter on the M&C air pump .......... 70 

Figure 38 Central computer unit (from bottom to top: Raspberry Pi, Pi16-ADC, custom 

printed circuit board) ........................................................................................................... 70 

Figure 39 Picture of the Raspberry Pi 3B+ (on the left) and the PI-16ADC (on the right) . 71 

Figure 40 Overview of the wiring of the first prototype (on the left side) and overview of the 

wiring of a similar system using the PCB-board (on the right side) ................................... 73 

Figure 41 Comparison of the symbol on the schematic with the footprint on the printed 

circuit board ......................................................................................................................... 74 

Figure 42 Positioning of the footprints and tracing of the electrics lines ............................ 75 

Figure 43 Printed circuit as supplied by Eurocircuits ........................................................... 75 

Figure 44 Welding the connectors on the custom PCB ....................................................... 76 

Figure 45 Connection between the printed circuit board and the ADC ............................. 77 

Figure 46 Female header on the ADC and male header on the printed circuit board ....... 77 

Figure 47 PyCharm screenshot .............................................................................................. 80 

Figure 48 Create a new project in PyCharm ......................................................................... 81 

Figure 49 Git incorporation to PyCharm .............................................................................. 82 

Figure 50 Log in GitHub using PyCharm ............................................................................. 82 

Figure 51 Create Git repository through PyCharm .............................................................. 83 

Figure 52 Commit and Push changes to GitHub ................................................................. 84 

Figure 53 GitHub repository example ................................................................................... 84 



 
HZS 

xiii 

Figure 54 Install libraries on PyCharm .................................................................................. 85 

Figure 55 File transfer from/to the Raspberry Pi .................................................................. 86 

Figure 56 Activate the virtual environment on the Raspberry Pi ......................................... 88 

Figure 57 Opening Thonny Python IDE ............................................................................... 89 

Figure 58 Virtual environment in Thonny Python IDE ....................................................... 89 

Figure 59 Copy-pasting code from PC to Thonny Python IDE ........................................... 91 

Figure 60 Testing code using file transfer and console ......................................................... 92 

Figure 61 Seacanairy software structure ................................................................................ 94 

Figure 62 Importation in Python example ............................................................................ 95 

Figure 63 General Python script layout ................................................................................. 96 

Figure 64 Logging flowchart ................................................................................................... 98 

Figure 65 Visual comparison between JSON and YAML ..................................................... 99 

Figure 66 MySQL connection process flowchart ................................................................ 102 

Figure 67 Database software flowchart ................................................................................ 103 

Figure 68 Display of the data stored in the MySQL database ............................................ 104 

Figure 69 Flowchart showing Seacanairy software functioning .......................................... 105 

Figure 70 Welcome screen of the Seacanairy (shown on the touchscreen) ....................... 106 

Figure 71 Seacanairy service status ....................................................................................... 107 

Figure 72 Files used by the Raspberry Pi for the proper execution of the software ........... 109 

Figure 73 Lid and Base panel plan ...................................................................................... 115 

Figure 74 Bottom panel plan ............................................................................................... 116 

Figure 75 Seacanairy electronic and electric schematic....................................................... 117 

Figure 76 Seacanairy PCB version 2.0 (current version) ..................................................... 119 

Figure 77 Seacanairy PCB version 3.0 (RTC DS3231 corrected) ....................................... 120 

Figure 78 Graph of the temperature measured in a garden in the countryside................. 195 

Figure 79 Graph of particulate matter sampled in a garden in the countryside ................ 196 

Figure 80 Graph of gas concentration in a garden in the countryside ............................... 197 

Figure 81 Graph of the flow rate measurement of the Seacanairy while sampling in a 

garden in the countryside ................................................................................................... 198 

Figure 82 Graph of gas concentration measurements on a terrace in the countryside ..... 199 



 

xiv 

Table of tables 
Table 1 List of Seacanairy sensors, what they measure, and their communication protocol . 4 

Table 2 Epluse E+E Electronik CO2 sensor characteristics .................................................... 4 

Table 3 CO2 Sensor tensions and resistors manufacturer's recommendations ...................... 6 

Table 4 CO2.py list of functions .............................................................................................. 9 

Table 5 OPC-N3 sensor characteristics .................................................................................. 20 

Table 6 Compatible sockets with the OPC-N3 ...................................................................... 22 

Table 7 OPCN3.py list of functions ....................................................................................... 25 

Table 8 Inventory of the Alphasense gas sensor .................................................................... 39 

Table 9 OPCN3.py list of functions ....................................................................................... 41 

Table 10 GPS.py function list ................................................................................................... 46 

Table 11 Inventory of the components needed to build the casing ........................................ 55 

Table 12 Inventory of the piping system .................................................................................. 61 

Table 13 Electrical connections for power supply ................................................................... 68 

Table 14 Inventory of the Central Computer.......................................................................... 71 

Table 15 Inventory of the printed circuit board ...................................................................... 72 

Table 16 Raspberry Pi TeamViewer ID and Password ............................................................ 86 

Table 17 pip3 function list ....................................................................................................... 90 

Table 18 Tip and tricks console ............................................................................................... 92 

Table 19 Raspberry Pi username and password ....................................................................... 92 

Table 20 Functions to manage the Seacanairy service for autostart after boot .................... 106 

 



 

xv 

List of abbreviations 
.py Python filename extension 

ADC Analogue to digital converter 

AFE Analogue Front End 

CS Chip Select 

CS Clock stretching 

GND Ground 

GPIO General Purpose Input/Output 

GPIO General Purpose Input/Output 

HAT Hardware Attached on Top 

I²C = IIC: Inter-Integrated Circuit 

IDE Integrated Development Environment 

MISO Master In Slave Out 

MOSI Master Out Slave In 

NL Normal Liter: gas volume unit at standard pressure and temperature conditions 
(0°C, 1 bar) 

OPC Optical Particulate Counter 

PC Personal Computer 

PCB Printed Circuit Board 

RX Receive 

SCCM Standard cubic centimetre per minute: flow rate of a gas at standard pressure 
and temperature conditions (0°C, 1 bar) 

SCL Serial Clock  

SCLK Serial Clock 

SDA Serial Data Line 

SLH Standard litre per hour: flow rate of a gas at standard pressure and temperature 
conditions (0°C, 1 bar)  

SLM Standard litre per minute: flow rate of a gas at standard pressure and 
temperature conditions (0°C, 1 bar) 

TX Transmission 

UART Universal asynchronous receiver transmitter 

USB Universal Serial Bus 

SPI Serial Peripherical Interface 



 
List of abbreviations 

xvi 

NDIR Nondispersive infrared (technology) 

ACK Acknowledge 

NACK Not acknowledged 

 



 

1 

Introduction 
A good breath of fresh sea air inspires many people to travel to the sea or go on a cruise 

trip. Unfortunately, ships emit substantial amounts of air pollutants. Although the 

contaminations are invisible, colourless and odourless, sea air is not as pure as it used to be. 

Suppose the wind and ventilation direct these pollutants towards living areas. In that case, crew 

and passengers are exposed to sulphur oxides, particulate matter, or nitrogen oxides. It is hard 

to evaluate if the air quality in the ship's surroundings is always good or bad or if pollution occurs 

only at specific times. Also, one wonders what the effect might be for a cocktail of pollutants. 

These questions can only be answered by thoroughly analyzing the air quality in and 

around ships. For this purpose, equipment is required to measure the concentration of several 

ships' specific pollutants in real-time. Many crowd-sourced science projects suggest the creation 

of such kinds of devices using low-cost components. However, the research question can only be 

answered using reliable, calibrated, and relatively easy systems. This thesis aims to propose the 

design of such a device: the Seacanairy. 

The first chapter introduces the selected sensors, which are the heart of the Seacanairy. 

Each sensor connected to the central computer requires a specific wiring and electrical 

connection, communication protocol, and proper software to ensure correct operation and data 

retrieval. Along the way of designing the Seacanairy, several problems (e.g., interferences) were 

encountered with various sensors, requiring research to find a proper solution. A dedicated 

subchapter inventories the troubles encountered.  

The second chapter explains how all the required components are combined into one 

single instrument inside a solid suitcase. The most challenging part consists of finding the 

necessary components on the market, considering compatibility with the other elements. An 

overview of the components used and their suppliers are provided to build a similar device for 

every embedded system. A tube connects all the sensors so that the same air passes through the 

sensors one after the other. During this stage, several problems were met, such as the shape of 



 
Introduction 

2 

the particulate matter sensor (OPC-N3), which does not allow an easy coupling with the tubes. 

In addition, all these sensors are connected to a central computer through electrical wiring, 

leading to interferences between different devices. 

The fourth chapter explains setting up a development environment on a stand-alone 

computer to work on the Seacanairy software. Finally, the fifth chapter covers the Seacanairy 

software that synchronizes all the sensors, manages settings, stores measurements into a database, 

and interacts with the operator. There is also a connection between the Seacanairy measuring 

tool and the cloud to access the data remotely in real-time. 



 

3 

Chapter 1 
The Sensors of the Seacanairy 

The Seacanairy is equipped with several sensors to measure the environmental 

parameters necessary to determine the air quality, such as gas sensors, particulate matter, 

temperature, pressure, and relative humidity. This chapter covers a series of points for each 

sensor employed within the Seacanairy. First, each device is designed to communicate with a 

computer via a specific communication protocol, such as UART, I²C, SPI or analogue. Each 

protocol has its own technical characteristics and therefore requires between 2 and 5 cables. 

Generally, on the sensor side, the connection is made via a female socket. The right compatible 

wire should be purchased as soon as possible to run some tests as the software is written. Second, 

the manufacturer's documentation gives instructions on how to communicate with the sensor. 

Those papers are often complex and incomplete. Making the correct electrical connection and 

performing the proper communication operations through custom software requires hours of 

research and many trials and errors. Every binary data sent by the sensor must be correctly 

decrypted and converted by the central informatics unit in readable values, i.e. concentrations, 

temperatures, pressures... After extensive research and many retrials, the software performs the 

processes smoothly and manage automatically every step to control the sensor and retrieve its 

data. For each sensor, a table lists all the software functions. Some flowcharts demonstrate the 

logic followed by the software. Finally, the last point explains the issues encountered, their causes 

(or hypothesis) and solutions. Table 1 lists all the sensors on board the Seacanairy. 



 
The Sensors of the Seacanairy 

4 

Table 1 List of Seacanairy sensors, what they measure, and their communication protocol 

Source: own work 

Piece 
No. 

Name Parameters Communication 

1 
E+E Elektronik EE894 

CO2 sensor 
CO2, temperature, relative humidity, 

atmospheric pressure 
I²C (E21) 

2 Alphasense OPC-N3 Particulate Matter Serial 

3 
Alphasense 4-AFE gas 

sensors 
NO2, O3, SO2, CO, temperature Analog 

4 GPS 
Latitude, Longitude, speed, heading, 

time…  
UART 

5 
Sensirion Mass Flow 

Meter 4100 
Air flow I²C 

6 Real Time Clock Time I²C 

1 E+E Elektronik EE894 CO2 sensor 

The CO2 sensor (see Figure 1) is an “Epluse E+E Elektronik EE894-HV2PCB8E25 

Compact”, which measures CO2, temperature, humidity, and ambient pressure for changing 

environmental conditions. The specifications of this sensor can be found in Table 2. 

Table 2 Epluse E+E Electronik CO2 sensor characteristics 

Source: adapted from the official documentation [11] 

 CO2 Temperature 
Relative 

Humidity 
Atmospheric 

pressure 
Units 𝑝𝑝𝑚 °𝐶 %𝑅𝐻 𝑚𝑏𝑎𝑟 

Range 0 → 5000 𝑝𝑝𝑚 
−40
→ 60 °𝐶 

0 → 95 %𝑅𝐻 

700
→ 1100 𝑚𝑏𝑎𝑟 

(non-
condensing) 

Accuracy 
(at 25°C and 
1013 mbar) 

± 50 𝑝𝑝𝑚 + 3% of 
the measured value 

± 0.5 °𝐶 ± 3 % 𝑅𝐻 
± 2 𝑚𝑏𝑎𝑟 

(from 20 to 80 
% RH) 

Calibration Every five years - - - 

Response time 

105 seconds with 
measured data 

averaging 
60 seconds with an 
instant data reading 

- - - 

 

 
1 Proprietary protocol. 



 
HZS 

5 

The sensor relies on dual-wavelength NDIR (nondispersive infrared) technology to get 

long-term stable CO2 readings. An infrared source with a specific wavelength and frequency 

irradiates the gas chamber. Each molecule's atoms have their resonation frequency in function 

of their mass. Therefore, CO2 molecules in the sampling space will resonate and vibrate at a 

known frequency which is the one used by the infrared source. A detector measures the residual 

infrared energy behind an optical filter at the opposite side of the infrared light source. The 

higher the CO2 concentration is, the more molecules will absorb the infrared light, and the less 

radiation will be detected. Then, the sensor firmware converts this reading to a CO2 

concentration by using the Lamber-Beert Law and applying compensation for temperature, 

atmospheric pressure and humidity to increase the reading's accuracy [6,11]. Fortunately, the 

sensor does all of these calculations itself and returns the concentration directly. 

 
Figure 1 Picture of the CO2 sensor 

Source: own work 

1.1 Sensor communication and wiring 

The CO2 sensor requires two wires for power (pin 2 connected to the ground GND and 

pin 1 connected to 5V of the Raspberry Pi). Sensor communication relies on the proprietary E2 

protocol, which is derived from the I²C and SMBus protocol. I²C communication requires two 

wires: the SDA (Serial Data line) on pin 3 and the SCK (Serial Clock) on pin 2. The pull up 

resistors connect the two communication lines with the 3.3 Volts of the Raspberry Pi to gives a 

high state on the SDA and SCK in standby mode. When data is transferred, the CO2 chip 

connects and disconnects the lines to the ground to tune the voltage according to the I²C 

standard protocol. Annexe 3 on page 117 shows the CO2 sensor wiring when connected alone 

to the Raspberry Pi, and Table 3 indicates additional information concerning the wiring. 



 
The Sensors of the Seacanairy 

6 

Table 3 CO2 Sensor tensions and resistors manufacturer's recommendations 

Source: own work and manufacturer documentation [33] 

 
Value recommended by the 

manufacturer 
Value used in the 

Seacanairy 
Bus High Voltage 3.3 → 5.2𝑉 5𝑉 
Pull-up resistor 

(𝑹𝟏 + 𝑹𝟐, 𝑹𝟑 + 𝑹𝟒) 
4.7 → 100 𝑘Ω  20 𝑘Ω 

 

All I²C communication is based on the same method. Also, I²C compatible devices are 

wired in parallel, and every device has its own I²C address, defined by the manufacturer. All 

communications are composed of sentences, on request of the user software. To start, the Master 

(in our case, the central computer – see point 0 in Chapter 1 on page 3) send a START bit 

followed by the device address byte it wishes to contact. The last bit indicates whether the Master 

wishes to write (from Master to Slave) or read (the opposite). Then, the concerned device replies 

with an ACK (acknowledge) or NACK (the opposite). Afterwards, bytes (composed of eight bits) 

follow as written in the software, separated by ACK or NACK bits. An ACK indicates successful 

reception of the last transmitted byte, while a NACK bit indicates an error when receiving the 

last byte, a complete memory, or the last byte of a read sentence. Finally, the Master completes 

the sentence with a STOP bit [15]. Figure 2 summarizes a regular I²C communication [13]. For 

this Raspberry Pi, the smbus2 Python library must be installed. The sensor requires the Master 

to support clock stretching. As seen in Figure 2, each bit is transferred during clock rises. If the 

sensor firmware is not ready to receive the next bit, it will keep the clock line down until it is 

ready to read the next bit. In that case, the Master waits for the sensor to release the clock line 

to transfer the next bit. 



 
HZS 

7 

 
Figure 2 I²C communication sentence 

Source: adapted from the manufacturer's documentation about I²C communication [13] 

1.2 Compatible wire and sockets 

The sensor has two different connectors (see Figure 3). The first one is a standard 2.54 

mm pitch female header, which is the one used on the Seacanairy. Nevertheless, another male 

connection is available on the side of the sensor. The compatible female socket is a 1.00 mm 

Mini Edge Card with reference Samtec MEC1-108-02-S-D-A. No connections should be made to 

the other available headers2 (see Annexe 3 on page 117 and Figure 3). 

 
Figure 3 CO2 sensor connectors 

Source: own work and official documentation [11] 

 
2 Manufacturer’s recommendation. 

Samtec Mini Edge 
Card connection 

2.54 pitch female header 



 
The Sensors of the Seacanairy 

8 

1.3 Software function list 

In order to operate the sensor correctly from the central computer,  Python code has 

been written based on the manufacturer's official documentation and I²C examples from the 

internet [8,9,10,11,18,31,33]. After hours of trial and error, the software performs the 

communication properly, the data verification, the conversion of the transmitted bytes into 

measurements, and the change of parameters within the sensor. Table 4 list all the functions of 

the CO2 software. Note that get_data() is the final function that performs all the necessary 

operations to obtain all the measurements easily. A copy of the Python file (CO2.py) is available 

in Annexe 5 on page 121. 



 
HZS 

9 

Table 4 CO2.py list of functions 

Source: own work, with the help of the manufacturer's documentation [8,9,13] 

Function Goal Argument Return 

loading_bar 

(name, delay) 

Show a loading bar on the screen 
for a certain amount of time. 
Make the user understand the 
software is doing/waiting for 
something 

name: Text to show on the left of the 
loading bar (waiting, sampling…) 

delay: the amount of time the system is 
waiting (seconds) 

Nothing 

digest(buf) 

Calculate the CRC8 checksum 
(based on the CO2 
documentation example) 

buf: List of bytes to digest [bytes to 
digest] 

Calculated checksum 
 

check(checksum, data) 

Check that the data transmitted 
are correct using the data and the 
given checksum 

checksum: Checksum given by the 
sensor (see sensor doc) 
data: List of bytes transmitted by the 
sensor before the checksum (see sensor 
doc) 

True if the data are correct, 
False if not 

Status 

(print_information=True) 

Read the status byte of the CO2 
sensor 
!! It will trigger a new 
measurement if the previous one 
is older than 10 seconds 

print_information: Optional: False 
to hide the screen messages 

True if the last measurement is 
OK, False if NOK 

getRHT()3 

Read the last Temperature and 
Relative Humidity measured, 
process the bytes, check a 
checksum, convert in °C and 
%RH 

 Dictionary with the following 
items {"RH", 
"temperature"} 

 

 
3 Refer to Figure 4 on page 50 for detailed flowchart. 



 
The Sensors of the Seacanairy 

10 

Function Goal Argument Return 

getCO2P()3 

Read the last CO2 instant, CO2 
average and pressure 
measurements, process the bytes, 
check checksum, convert in hPa 
and ppm 

 Dictionary containing the 
following items {"average", 
"instant", "pressure"} 

get_data() 

Get all the available data from 
the CO2 sensor (CO2 
instant/average, pressure, 
temperature, humidity 

 Dictionary containing the 
following items { 
"pressure", 

"temperature", "CO2 

average", "CO2 instant", 

"relative humidity"} 

internal_timestamp 

(new_timestamp=None) 

Read the internal sampling 
period of the CO2 sensor. To 
change the value, write it 
between the brackets (in seconds) 

new_timestamp: None or empty to read, 
new value in seconds to change it. 

Actual internal sampling 
period of the sensor 

trigger_measurement 

(force=False) 

Request a new CO2, t°, pressure 
and RH measurement IF the 
previous one is older than 10 
seconds. Force to avoid the 
previous 10 second's condition. 
Same function as 'status()' 
 

force:  True to apply the function two 
consecutive times to be sure that the 
sensor is well synchronized with the 
Seacanairy; False to apply it once 
(during the main loop of the Seacanairy, 
for example) 
 

True or False if status if OK 
or NOK 

read_internal_calibration 

(item) 

Read the internal calibration of a 
particular sensor item 

item: indicate which internal calibration 
to read: 'relative humidity’, 'temperature', 
'pressure', 'CO2', 'all' 

A list containing the 
calibration settings [offset, 
gain, lower_limit, 

upper_limit] 

read_from_custom_memory 

(index, number_of_bytes)4 

Read bytes from specified custom 
memory address in the CO2 
sensor internal memory 

index: index of the data to be read (see 
sensor doc) 
number_of_bytes: number of bytes to 
read (see sensor doc) 

list[bytes] from right to 
left 

 
4 Refer to Figure 5 on page 22 for detailed flowchart. 



 
HZS 

11 

Function Goal Argument Return 

write_to_custom_memory 

(index, *bytes_to_write)4 

Write data to a custom memory 
address in the CO2 sensor 
internal memory 

index: index of the customer memory to 
write (see sensor doc) 
bytes_to_write: unlimited amount of 
bytes to write into the internal custom 
memory at index (see sensor doc) 

True (Success) or False 
(Failure) 

 



 
The Sensors of the Seacanairy 

12 

1.4 Software schematic 

The purpose of the following flow charts is to illustrate graphically the various stages 

conducted by the Python software during the execution of various functions. The steps shown 

are the result of extensive research based on the manufacturer's documentation, internet 

examples, smbus2 library documentation, and trial and error. 

1.4.1 General procedure for reading measurements 

Figure 4 on page 13 is a flow chart graphically representing all the operations 

automatically performed by the getCO2P(), getRHT(), and get_data() functions. The 

corrugated rectangle in the top right of the flow chart represents the Seacanairy settings file (see 

point 3 on page 98). In the centre of the flow chart, the large rectangle represents the I²C 

communication. On request, the sensor sends the bytes containing the measurements, followed 

by the result of a known calculation based on the bytes transmitted, called the sensor checksum. 

Then, the central computer performs the same calculation with the received bytes and compares 

its result with the sensor's result. If the two checksums are identical, then the bytes are the same, 

and the transmission is successful. However, if the checksums are not identical, it means that 

bytes received by the central computer are corrupted. 

1.4.2 Procedure for reading and writing bytes inside the sensor custom memory 

The CO2 sensor has an internal memory holding a series of numbered bytes. Each byte 

corresponds to a specific setting, such as the measurement period, calibration, or sensor status. 

This memory is accessible by the user and keeps the settings even in a power supply interruption. 

In order to use the maximum of available sensor functionality, it is, therefore, necessary to be 

able to read and change the content of the sensor's memory. Figure 5 on page 14 is a flow chart 

representing the procedure followed by the software for reading and writing bytes inside the 

sensor memory. Functions read_from_custom_memory(index, number_of_bytes) (for 

reading bytes from the sensor to the central computer) and write_to_custom_memory(index, 

*bytes_to_write) (for writing bytes from the central computer to the sensor memory) 

automatically performs all steps shown in the flowchart. 

 



 
HZS 

13 

 
Figure 4 General procedure for reading CO2 sensor measurements flowchart 

Source: own work, based on manufacturer's documentation instructions [8,9,10,13] 



 
The Sensors of the Seacanairy 

14 

 
Figure 5 Reading and writing inside sensor custom memory flowchart 

Source: own work based on the manufacturer's documentation [8,9] 

1.5 Air measurement and data reading timing 

The CO2 sensor is designed to takes measurements autonomously at a constant sampling 

time. Function internal_timestamp() writes the desired sampling time in seconds (a number 

between 10 and 3600) into its memory. Since the data written in the internal memory remains 

stored despite a power cut, each time the sensor is powered up again, it starts measuring 



 
HZS 

15 

automatically at the last period written in the memory. That way, getRHT() and getCO2P() 

functions do not measure the air but read the last values in the internal memory. However, if 

the user wishes to measure at a precise moment by himself, he can request the sensor sampling 

by reading the status byte or executing the trigger_measurement() function. If the last 

measurement taken by the CO2 sensor dates back for more than 10 seconds, then the sensor will 

take a new measurement. However, if the last measurement is more recent than 10 seconds, the 

sensor will not take a new one. In order to be sure that the sensor performs a new measurement, 

regardless of the time interval that has elapsed, the following procedure should be followed: 

request a new measurement, wait 10 seconds, and trigger another measurement. In this way, 

regardless of whether the last measurement is old enough or not, the conditions will be fulfilled 

for the second triggering to occur because there will always be a minimum of 10 seconds elapsed 

since the last measurement. This procedure is automatically performed by function 

trigger_measurement(force=True). After each triggered measurement, the sensor interval 

time counter is set back to zero, and the following measurement will therefore occur when the 

sensor sampling period is elapsed. 

Figure 6 is the sensor timing schematic, as given by the manufacturer. Note that the 

sensor's firmware manages the blue part on the graph while the central computer controls the 

red/green part. Sampling initiation (Power-Up) occurs autonomously at regular intervals as 

defined in the sensor memory under the sampling period or manually when triggered by the 

user, as explained before. Contrary to what one might think by looking at the diagram, the sensor 

does not notify the central computer when the measurement is complete. It is, therefore, 

impossible to know when the data are ready for reading unless manual triggering and close 

monitoring of the time elapsed via the software. The software should wait a minimum of 15 

seconds between measurement triggering and data reading (recommended by the manufacturer). 

In order to reduce that sampling uncertainty, the Seacanairy software has been designed 

to proceed as follows. At startup, the central computer writes into the sensor memory the 

sampling period. Then, it requests a measurement via the trigger_measurement() function. 

Ten seconds later, the Seacanairy software loop starts. At the start of each new loop, the central 



 
The Sensors of the Seacanairy 

16 

computer sends a measurement request to the sensor. Then, it waits for a minimum of 18 

seconds5 before reading the data into the CO2 sensor memory. 

 
Figure 6 CO2 sensor sampling timing 

Source: manufacturer's sensor documentation [8] 

1.6 Faced issues during the development 

1.6.1 Consecutive I²C write and read 

In contrast with the standard I²C protocol (refer to point 1.1 on page 5), the CO2 

communication works by combining write (from Master to Slave) and read (from Slave to Master) 

actions in one single sentence, without any STOP bit in between, as shown in Figure 7. Where 

most devices using I²C communication separate write and read operations into two separate 

sentences, the CO2 sensor does not. After intensive research and trials, it appears that the 

standard SMBus Python library usually used for I²C communications had been updated for such 

devices under the name smbus2 [18]. Figure 7 is the schematic transmission to be followed by 

the central computer to read relative humidity and temperature and Figure 8 is a Python code 

template for doing such I²C operation. Note that the green parts in the schematic go from the 

CO2 sensor to the central computer and the white parts from the central computer to the sensor. 

The ACK (acknowledge) bits indicate successful reception of the last transmitted byte, while a 

 
5 Other tasks are processed by the central computer during this delay. If those task takes extra time, then the delay 
may increase. 



 
HZS 

17 

NACK (non-acknowledge) indicates an error when receiving the previous byte, a complete 

memory, or the end of a read operation. CS means clock stretching, the situation where the slave 

keeps the SCK low to make the master wait. 

 
Figure 7 Schematic of I²C write and read sentences without any STOP bit in between 

Source: E+E Elektronik documentation [9] 

from smbus2 import SMBus, i2c_msg  # import libraries after pip3 install 

smbus2 (in the virtual environment) 

 

CO2_address = 0x33  # CO2 sensor i2c slave address 

 

# Indicate bytes to be written to the CO2 sensor 

# (See sensor documentation to know which bytes to send for which purpose) 

write = i2c_msg.write(CO2_address, [0xE0, 0x00]) 

 

# Indicate amount of bytes to be read 

read = i2c_msg.read(CO2_address, 6) 

 

with SMBus(1) as bus: 

    # Start the communication, and indicate the i2c sentence between 

brackets 

    # START + SLAVE ADDRESS & write bit + [master send bytes] + SLAVE 

ADDRESS & read bit + [slave send bytes] + STOP 

 

    bus.i2c_rdwr(write, read) 

 

    # Bytes read from the i2c communication are returned under the 'read' 

variable 

    print(read)  # will print on the screen the bytes sent by the sensor in 

a list 

Figure 8 I²C write and read sentences without any STOP bit in between (Python code) 

Source: adapted from Python Package Index (PyPi) [18] 

1.6.2 Addition of other I²C devices to the central computer 

As explained in point 1.1, all the devices using the I²C communication are connected to 

the central computer in parallel, some having as standard some pull-up resistors on SDA and 

No STOP bit 



 
The Sensors of the Seacanairy 

18 

SCK lines welded on their PCBs. For the CO2 sensor, the user must add these pull-up resistors 

manually when wiring the sensor. However, some devices such as the Sensirion Mass Flow Meter 

and the RTC already have their own pull-up resistances on both lines. Therefore, the more 

devices are connected to the central computer in parallel (as this is the way of connecting I²C 

devices), the more resistors are introduced in parallel, and the more the equivalent resistance6 

will decrease7. Once these equivalent resistors drop below 10 𝑘Ω, which is the minimum value 

recommended by the manufacturer, the CO2 sensor might not work correctly. After connecting 

the Sensirion Mass Flow Meter to the central computer, the CO2 sensor stopped working. By 

removing the two pull-up resistors from the CO2 sensor and unwelding the resistors on the RTC 

chip, the CO2 sensor started working correctly again. 

1.6.3 inability to manually trigger a measurement 

According to the manufacturer's documentation, reading the status byte 0x71 should 

trigger a new measurement if the previous one is older than 10 seconds (see 1.5) and return one 

byte indicating the last measurement status. In practice, reading the status byte never trigger any 

measurement. Experiments were conducted to assess the ability of the central computer to send 

a sampling request to the sensor. Firstly, the sensor measurement period was set to 60 seconds. 

Then, the software was adapted to read the status byte every 10 seconds. The experiment was 

carried out in the dark to see the sensor's infrared light during the air sampling. It appears that 

only measurements every 60 seconds have taken place. Therefore, this means that the sensor 

does not react to any sampling requests from the central computer. In conclusion, it is impossible 

to request a measurement at a specific desired time. 

1.6.4 Continuous indication of temperature error on the status byte 

As shown in Figure 6 on page 15, the manufacturer indicates that the central computer 

should read the status byte (0x71) after each reading of the sensor measurements to check the 

status of the last measurement taken. When converting the value read into a binary, eights digits 

are obtained, either 0 or 1. Bits 0, 1 and 38 indicate humidity, temperature, and the CO2 sensor 

status, respectively. A value of 1 on these bits indicates a problem, while a value of 0 shows none. 

 
6 The equivalent resistance is the resistance that could replace all other resistance in the electronic circuit without 
changing the conductivity properties of that circuit. 
7 By increasing the resistance, the circuit tends to be open, while by decreasing the resistance it tends to be closed 
(Ohm’s law). 
8 Note that the bits are read from right to left, and bit 0 is the first on the right. 



 
HZS 

19 

Each time the status has been read by the central computer, especially when triggering a 

measurement, the CO2 sensor returned an error for the temperature sensor. The only plausible 

reason is a too low electrical voltage. However, the power supply is constant at 5 volts. 

1.6.5 Checksum error during measurement readings 

The Python software redundantly returns errors and warning on the screen during the 

temperature, relative humidity, pressure, and CO2 measurements readings. In practice, as shown 

in Figure 4 on page 13, the sensor sends a series of bytes containing the data and the result of a 

known calculation made based on the bytes previously transmitted (this value is called the 

checksum). So, after reading all the data bytes from the sensor, the central computer performs 

the same calculation. Therefore, it should find the same answer, the opposite showing that some 

data bytes were not correctly received. While the Seacanairy is running, the checksum Python 

algorithm, performing that verification, often detects a mismatch between the two checksums 

and prints an error message on the screen. Another message follows, showing the value of the 

data bytes, the sensor checksum and the central computer calculated checksum. When taking a 

closer look at the information, we notice that similar values keep coming back. This suggests that 

they might be error codes, but the manufacturer's documentation never talks about it. When 

such errors occur, the software waits for 3 seconds and start rereading the measurements data. 

The Python software repeated this read and wait for the loop a certain number of times until the 

maximal reading attempt number is reached. This value can be changed in the 

seacanairy_settings.yaml file, the default value being six. The value 6 comes from several 

tests conducted during the development of the Seacanairy. On the one hand, this leaves enough 

chance for the sensor to return the data correctly. On the other hand, this prevents the software 

loop from taking too much time. 

2 OPC-N3 particulate matter sensor  

The OPC-N3 is a sensor manufactured by Alphasense designed to measure particulate 

matter. As its name suggests, this sensor is an Optical Particulate Counter. A fan forces air to 

move through the sensor measuring chamber. Then, a laser beam illuminates the air, the beam 

being so thin that it allows the illumination of only one aerosol at a time. When the laser beam 

hits an aerosol, the laser light is scattered by the particle. The intensity of the light reflected 

makes it possible to determine the type, and the mass of the particle illuminated [14,32]. The 



 
The Sensors of the Seacanairy 

20 

sensor can detect around 100% of particles with a size of 0.35 μm and around 50% of particles 

of 0.30 μm diameter. The sensor measuring range (from 0.35 to 40 μm) is divided into 24 bins. 

For each bin size, the Alphasense proprietary software counts the number of particulates passed 

during one second. The firmware is fast enough to reach 10,000 particle readings per second. 

Then, according to the particle size distribution, the sensor returns three mass loadings, 

respectively PM1 (total mass of particles smaller than one-micrometre particles), PM2.5 (total mass 

of particles smaller than 2.5 µm) and PM10 (total mass of 10-micrometre particles). Switching 

automatically to low and high gain can manage reading PM10 of up to 10,000 μg/m³ [2]. The 

primary sensor characteristics are summarized in Table 5. After emails exchange with the sensor 

manufacturer, it appears that the total flow rate is the total amount of air that passes through 

the sensor, propelled by the fan, while the sample flow rate is the air flow that passes through 

the laser beam. 

Table 5 OPC-N3 sensor characteristics 

Source: adapted from the official documentation [23] 

Particulate size range 
0.35 → 40 𝜇𝑚 spherical equivalent size 

(based on 100% detection efficiency at 0.35 𝜇𝑚, 
50% at 0.3 𝜇𝑚) 

Total flow rate9 (typical) 5.5 𝐿/𝑚𝑖𝑛 
Sample flow rate10 (typical) 280 𝑚𝐿/𝑚𝑖𝑛 

Max particle count rate 10 000 particles/second 

Max coincidence probability 
At 106 particles/L 0.84 % concentration 
At 500 particles/L 0.24 % concentration 

 

 
Figure 9 Pictures of the OPC-N3 

Source: Alphasense website [24] 

 
9 Total amount of air that passes through the sensor, propelled by the fan. 
10 Air flow that passes through the laser beam. 



 
HZS 

21 

2.1 Data returned by the sensor 

During each sampling, the sensor returns a histogram containing a whole range of data. 

Hereafter a list of all the information given by the sensor, based on the manufacturer's 

documentation and mail exchanged with the sensor designers [2,3]. 

• Bin from 0 to 23: number of particles for each bin size passed through the laser 

beam per minute. 

• MToF (mean time of flight): for bin 1, bin 3, bin 5 and bin 7, it is the average 

amount of time that particles (for corresponding bin size) took to cross the laser 

beam. The sensor uses these values for dynamic fan compensation. 

• Sampling period: the amount of time the laser beam has been analyzing the air. 

This value is always half the time when both fan and laser run because the sensor 

automatically samples in low and high gain. 

• Sample flow rate: air flow rate passing through the laser beam. This value is always 

lower than the total air flow rate because the laser only measures a part of the 

total amount of air passing through the sampling space. 

• Temperature: this value should not be considered because the temperature sensor 

is not located in the fan air flow. With the temperature sensor being welded to 

the OPC-N3's motherboard, temperature readings are always higher than other 

more exact temperature sensors (the CO2 sensor in the case of the Seacanairy). 

• Relative humidity: as for the temperature reading, this measurement should not 

be considered. 

• PM1: the total mass of particles smaller than one-micrometre particles. 

• PM2.5: the total mass of particles smaller than 2.5-micrometre particule. 

• PM10: the total mass of 10-micrometre particles. 

• Reject count Glitch: noise and invalid particle errors indication. 



 
The Sensors of the Seacanairy 

22 

• Reject count Long TOF: number of particles rejected by the system because of 

their too long flight time in the laser beam. 

• Reject count ratio. 

• Fan rev count. Value has always been zero. 

• Laser status. 

2.2 Sensor communication and wiring 

As shown in Figure 9, the sensor has two connexions. The first one is the Serial 

Peripherical Interface (SPI) available through a Molex Pico-Clasp PCB Header fitted with a single 

Row, six pins and a pitch socket of 1 mm. Table 6 shows the necessary components that should 

be purchased to make the connection to the SPI possible. The second connection is a USB 

micro-B. Through those two sockets, the sensor can be operated in three ways. 

Table 6 Compatible sockets with the OPC-N3 

Source: manufacturer's documentation [2], own work 

No. Reference Name 
Price per 

unit 

1 15133-0603 
Cable Pico-Clasp to Pico-Clasp assembly 1 row, 6 way, 

300 mm length 
6.6€ 

2 
501331-

0607 
Male PCB Molex connector 

6.61/10 
units 

 

The first operating way is the standalone mode. Once the sensor is powered by 5 Volts 

via pin numbers 1 and 6 (see Annexe 3 on page 117), and if any communications occur for one 

minute on the SPI lines, the sensor starts sampling by itself. Both fan and laser keep running, 

and the sensor firmware periodically stores data in the built-in SD card, which is then accessible 

via the USB port. However, this autonomous working system is not suitable within the 

Seacanairy framework. The second way of employing this sensor is by using the Alphasense OPC-

N3 software with an SPI to USB adapter. Running on Windows, it allows easy use of the sensor 

and quick display of the measurements. Nevertheless, this does not meet the requirements of 

the Seacanairy. The last operating principle relies on custom software. After reading the 

manufacturer's documentation and hours of testing, it was possible to create our own Python 

software allowing the excellent operation of the OPC-N3 from the central computer. 



 
HZS 

23 

The Serial Peripherical Interface is a simultaneous synchronized transmission where both 

the master and the slave communicate at the same time bit per bit based on the master's clock 

pulse. Therefore, as shown in Figure 10, the protocol requires minimum of three wires: the 

MOSI (Master Out Slave In), the MISO (Master In Slave Out) and the SCLK (Serial Clock) 

controlled by the master. Annexe 3 on page 117 shows the wiring of the OPC-N3 sensor to the 

central computer. It gets power via pins 1 and 5 from the Raspberry Pi. Then, pins 2, 3 and 4 

(SCLK, MISO and MOSI) must be connected to the Raspberry Pi GPIO on the correct pins [3]. 

The SPI protocol allows several SPI devices to connect in parallel to the same bus (SCLK, MISO 

and MOSI), provided they all carry a SS (Slave Select), also called CS (chip select) line. In this 

case, the Master will keep the SS line of the sensor with which it wishes to communicate low, 

indicating to the other sensors whose SS line is high that they must remain silent. The OPC-N3 

slave select line is available through pin 5. This line should be connected to the central computer 

SPI CE0 line (Raspberry Pi HAT pin 26). Nevertheless, the use of the SS line with the OPC-N3 

has never worked correctly during the Seacanairy development. After personal investigations, it 

appears that the SS line of the OPC-N3 must remain connected to the ground. This is explained 

in deeper detail in point 2.5.2 on page 34. The Seacanairy software operates the OPC-N3 

communications based on the Linux Kernel Python library named spidev [34]. 

 
Figure 10 Schématic of the connection of multiple SPI devices to the same Master 

Source: Wikipedia, Serial Peripherical Interface [4] 

2.3 Software function list 

Python software has been written based on the manufacturer's official documentation 

and Python libraries documentation to control the sensor from the central computer. 

Developing the software required hours of research, either in examples found on the internet or 

trial and error. In the end, it handles all the communications, the data verification, the 



 
The Sensors of the Seacanairy 

24 

conversion of the transmitted bytes into measurements, and the modification of parameters 

within the sensor itself. Table 5 list all the functions of the OPC-N3 Python software. Note that 

get_data() is the final function that does all the necessary operations to get a measurement 

(start the fan, the laser, sample, bytes download and conversion, and stop fan and laser). A copy 

of the Python file (OPCN3.py) is available in Annexe 6 on page 134. 

 



 
HZS 

25 

Table 7 OPCN3.py list of functions 

Source own work, with the help of the manufacturer's documentation [2,3] 

Function Goal Argument Return 

initiate_transmission 

(command_byte)11 

Initiate SPI transmission to 
the OPC-N3 
First loop on the 
manufacturer's flow Chart 

command_byte: byte to be 
sent during communication 
initiation 

True when SPI initiation has been done, 
False if it failed 

fan_off() 
Turn OFF the fan of the 
OPC-N3 

None False if it succeeded turning off the fan, 
True if it failed 

fan_on() 
Turn ON the fan of the 
OPC-N3 

None True if it succeeded in turning off the 
fan, False if it failed 

laser_on() 
Turn ON the laser of the 
OPC-N3 

None True if it succeeded in turning off the 
laser, False if it failed 

laser_off() 
Turn OFF the laser of the 
OPC-N3 

None False if it succeeded turning off the 
laser, True if it failed 

read_DAC_power_status 

(item='all') 

Read the status of the Digital 
to Analog Converter as well 
as the Power Status 
Try only one time to read the 
byte(s) 

item: 'fan', 'laser', fanDAC', 
'laserDAC', 'laser_switch', 
'gain', 'auto_gain_toggle', 'all' 

DAC power byte, 5 status bytes if 
argument is 'all' 

digest(data) 

Calculate the CRC8 
Checksum with the bytes 
received 

data: a list containing an 
infinite number of bytes with 
which to calculate the 
checksum 

Calculated checksum 

 
11 Refer to Figure 11 on page 43 for a schematic function flowchart, and point 2.4.1 on page 41 for its explanation. 



 
The Sensors of the Seacanairy 

26 

Function Goal Argument Return 

check(checksum, *data) 

Check that the data received 
are correct, based on those 
data and the checksum given 

checksum: checksum sent by 
the sensor (the last byte in 
any transmission) 
data: bytes sent by the 
sensor, with which to 
calculate the checksum 

True if data are corrects, False if they are 
not 

convert_IEEE754(value) 

Join bytes and convert them 
to float according to the 
IEEE754 encryption 

value: a list containing the 
two bytes to decrypt 

decrypted float 

loading_bar(name, delay) 

Show a loading bar on the 
screen for a certain amount 
of time. Make the user 
understand the software is 
doing/waiting for something 

name: text to be shown on the 
left of the loading bar 
(waiting, sampling...) 
delay: the amount of time the 
system is waiting (seconds) 

Nothing 

PM_reading() 

Read the PM bytes only from 
the OPC-N3 sensor 
Read the data and convert 
them in a readable format, 
checksum enabled 
Does neither start the fan nor 
start the laser 
Recommended to use 
read_histogram() instead of 
this function 

None List[PM 1, PM2.5, PM10] 



 
HZS 

27 

Function Goal Argument Return 

getPM 

(flushing_time, 

sampling_time) 

Get PM measurement from 
OPC-N3 
Recommended to use 
get_data() instead of this 
function 

flushing_time: time 
(seconds) during which the 
fan runs alone to flush the 
sensor with fresh air 
sampling_time: time 
(seconds) during which the 
laser reads the particulate 
matter in the air 
 

List[PM1, PM2.5, PM10] 

read_histogram 

(sampling_period)12 

Read all the available data 
from the OPC-N3 
It first read the histogram to 
remove the old data 
remaining in the OPCN3 
buffer 
Then it lets the sensor take 
sample during the defined 
sampling period 
Finally, it read a last time the 
histogram data returned by 
the sensor 
It decodes the bytes returned 
into a readable format 
It returns everything in a 
dictionary 

sampling_period: the 
amount of time (seconds) 
during while the fan is 
running and the laser is 
sampling 

Dictionary{"PM 1", "PM 2.5", "PM 10", 
"temperature", "relative humidity", "bin", 
"MToF", "sampling time","sample flow 
rate", "reject count glitch", "reject count 
longTOF", "reject count ratio","reject 
count out of range", "fan revolution 
count", "laser status"} 

 
12 Refer to Figure 12 on page 44 for schematic function flowchart, and point 2.4.2 on page 41 for its explanation. 



 
The Sensors of the Seacanairy 

28 

Function Goal Argument Return 

get_data 

(flushing_time, 

sampling_time) 

Get all the possible data from 
the OPC-N3 sensor 
Start the fan, flush air during 
defined time, start the laser, 
sample the air during defined 
time, turn off the laser and 
the fan 

flushing_time: time during 
which the ventilator is 
running without sampling to 
refresh the air inside the 
casing 
sampling_time: time during 
which the sensor is sampling 

Dictionary{"PM 1", "PM 2.5", "PM 10", 
"temperature", "relative humidity", "bin", 
"MToF", "sampling time", "sample flow 
rate", "reject count glitch", "reject count 
longTOF", "reject count ratio", "reject 
count out of range", "fan revolution 
count", "laser status"} 

join_bytes(list_of_bytes) 

Join bytes to an integer, from 
byte 0 to byte infinite (right 
to the left) 

list_of_bytes: list [bytes 
coming from the 
spi.readbytes or spi.xfer 
functions] 

Bytes concatenated to an integer 

set_fan_speed(speed_percent) 

Set the sensor fan speed 
Reduce fan speed can 
decrease dust deposition in 
the sensor casing 
The argument in percent, 
calibrated from the slowest as 
possible to the fastest 

speed_percent: number 
between 0 and 100 (0 = 
slowest, 100 = fastest) 

Nothing 

initialization_SPI() 

Initialize the OPCN3 SPI 
To be executed once after 
Seacanairy power up 
To be executed on time only 
after powering up the 
OPCN3 

Nothing Nothing 



 
HZS 

29 

2.4 Software schematic 

The flowcharts on the following pages have been drawn up based on the Python software 

written previously to allow the correct integration of the OPC-N3 into the Seacanairy framework. 

After long hours of working, Python software meets the Seacanairy requirements and operates 

the OPC-N3 properly. The purpose of the following flowcharts is to illustrate the different 

interactions and processes that occur during the execution of certain functions of the software.  

2.4.1 SPI communication initiation 

Each communication with the OPC-N3 begins with an initiation loop. First, the central 

computer sends a byte on the SPI (called the command byte) to indicate the start of a certain 

type of communication to the sensor. Then, the sensor sends back to the central computer 

whether it is ready to carry out the asked communication. If the sensor returns that it is busy 

(0x31), then the central computer waits ten milliseconds and tries again. This call operation can 

be repeated up to 60 times. If even after 60 calls, the sensor is still not ready, then the central 

computer Python software considers a communication misunderstanding. Therefore, it waits for 

3 seconds, the amount of time required by the sensor to clear its SPI cache after the 

communication issue. This is represented by 'cycle' in the diagram. When these two loops have 

taken place three times in a row, then the Seacanairy software considers the error to be more 

severe and cancels the initial operation. This procedure is shown in Figure 11. 

2.4.2 Histogram reading 

Figure 12 on page 32 shows all the steps performed by the software to get the histogram 

data. In the diagram, the transmission initiation is performed by the 

initiate_transmission(command_byte) function, as explained in point 2.4.1 and shown in 

Figure 11. If this initiation process fails, then the histogram reading is cancelled. In order to 

receive data from the OPC-N3, the central computer must send bytes on the SPI to the sensor 

and simultaneously read its answer (the value of the bytes sent does not matter). 

The histogram consists of 85 bytes containing all the data. The 86th byte sent results 

from a known calculation made by the sensor with the previous 85 bytes, which is the checksum. 

When the central computer has finished reading the 86 bytes, it performs the same calculation 

with the 85 bytes transmitted and then compares its answer with the sensor checksum. If the two 

values are the same, then it means that the 85 bytes received are correct. However, if the two 



 
The Sensors of the Seacanairy 

30 

values are different, then it means that one or more data bytes were corrupted during the SPI 

transmission. In such a situation, a second reading is therefore necessary. However, each time 

the central computer reads the 86 bytes, the OPC-N3 deletes all the measurement related data 

and starts counting particles from zero. This also explains why the 86 bytes of the histogram are 

read at the start of the histogram reading procedure. However, it also means that if the checksums 

are different, the central computer has to wait again for the OPC-N3 to measure the air before 

reading a second time. This is the reason why there is a loop in between the second initiate 

transmission process and the checksum decision diamond. Note that this feature can be disabled 

via the settings file (see page 98). 

2.4.3 Perform a particulate matter measurement 

Figure 13 indicates the different operations carried out by the get_data() function in 

order to obtain a histogram from the OPC-N3. If the ventilator fails to start, then the software 

will neither start the laser nor read the histogram. Indeed, no measurement is possible without 

any air flow in the sampling chamber. Likewise, the central computer will not read the histogram 

data if it failed to start the laser. 



 
HZS 

31 

 
Figure 11 Flowchart of the SPI communication initiation 

Source: own work, based on the manufacturer’s documentation [2,3] 



 
The Sensors of the Seacanairy 

32 

 
Figure 12 Flowchart of the histogram reading 

Source: own work, based on the manufacturer’s documentation [2,3] 



 
HZS 

33 

 
Figure 13 Flowchart of getting data from the OPC-N3 sensor 

Source: own work, based on the sensor manufacturer’s documentation [2,3] 

2.5 Faced issues 

2.5.1 Simultaneous reading and writing of data 

In opposition to the I²C communication explained previously for the CO2 sensor, Serial 

Protocol Interface and the OPC-N3 use two-way simultaneous communication. This means that 

the central computer sends bytes at the same time as others are received from the sensor. 

Therefore, writing data with function spi.writebytes() and then reading a certain number 

of bytes with function spi.readbytes() does not work because it is imperative to perform 

these two actions simultaneously. The only function allowing such operation is spi.xfer(), 

which writes the bytes inserted as arguments and returns the bytes received simultaneously. Note 

that those functions are provided by the spidev Python library [34]. 



 
The Sensors of the Seacanairy 

34 

2.5.2 Sensor Slave Select line wiring 

Pin 5 in Annexe 3 on page 117 is the SS (Slave Select) line. When low, it indicates that 

the current communication on the SPI bus is assigned to the OPC-N3. On the other hand, when 

this line is high, it tells the sensor to remain silent on the SPI bus. As our central computer 

Python library (spidev) is compatible with the use of such a line on GPIO pin 24 (see Annexe 

3 on page 117), the OPC-N3 SS line was initially connected through this pin to the central 

computer. However, during software development, while initiating SPI communication (as 

explained in 2.4.1 on page 29), the OPC-N3 never responded bytes 0xF3 or 0x31 as expected, 

but instead the following combinations: [230, 99, 0], or [36, 146, 73]. Long research followed to 

find out if the error came from the Raspberry Pi (the central computer used), the Python library 

that providing the SPI communications, the wiring of the sensor, or the sensor itself. When 

moving to the SS line wiring, it was noticed that the values received during SPI communication 

initiation varied. From then on, research focused on the SS line. After many tests, the addition 

of resistors, and even diodes, it was discovered that the sensor worked perfectly and reliably when 

the SS line remains continuously connected to the ground. Therefore, this discovery goes against 

the manufacturer's documentation, which explicitly indicates that the SS line can be left 

disconnected [3]. 

2.5.3 Frequency conflict between the OPC-N3 SPI and the GPS UART 

While developing and connecting the GPS receiver (see point 4 on page 45) to the UART 

GPIO bus of the central computer, all communication with the OPC-N3 on the SPI bus were 

lost. Despite the excellent functioning of the OPC-N3 initiation process, the reading of the 86 

histogram bytes gave alternately 0 and 46. Several tests were achieved out. Firstly, the SPI bus of 

the Raspberry Pi was tested by connecting both the MISO and the MOSI of the Raspberry Pi 

through a 10 𝑘𝛺 resistor13. Then, we wrote a small Python software which had the simple 

purpose of sending a series of bytes14 (on the MOSI) while simultaneously reading the received 

bytes (on the MISO). This test was successful because all the numbers sent were correctly received 

by the Raspberry Pi. So, this means that the Raspberry Pi SPI bus was working correctly. 

Secondly, several SPI frequencies were tested, from  300 to 750 kHz (speed range defined by the 

manufacturer), but this did not solve the problem [3]. After reflection, the idea arises that the 

frequencies of the two buses (UART of the GPS and SPI of OPC-N3) could conflict. Let imagine 

 
13 The resistor allows any damage to the Raspberry Pi due to the short circuit thus formed. 
14 A simple spi.xfer([0, 1, 2, 3…]) from the spidev Python library. 



 
HZS 

35 

that one bus is operating at a particular frequency while another is operating on another. The 

CPU must remain stable on a fixed frequency during the transmission to detect bus rising and 

lowering for the communication to work. If the SPI and UART frequencies are not multiple of 

each other, then the processor may miss bits on one of these buses. As the UART frequency is 

fixed at 9600 by the GPS receiver clock, adaptations should be applied to the SPI communication 

frequency of the OPC-N3. The following formula shows the calculation performed in order to 

find the used frequency of 307200 𝐻𝑧. At this frequency, the OPC-N3 usually worked again. 

9600 × 31 =  297600 → outside of OPC-N3 working frequency 

9600 × 32 =  307200 → inside OPC-N3 working frequency 

2.6 Interference between M&C air pump and SPI communication 

When adding the M&C air pump to the installation, all communication with the OPC-

N3 were lost. Two hypotheses were exposed: the physical vibrations of the suitcase and the 

electrical noise caused by the pump motor. Hereafter is a summary of the tests performed: 

• The OPC-N3 has been removed from the case and hold in hands to be isolated 

from any physical vibration generated by the pump motor. No improvements 

were noticed. 

• Le top aluminium plate also suffers from vibrations. The central computer, fixed 

on that plate, was detached and held in hands to remain isolated from any 

physical vibration. No improvements were noticed. 

• The cable provided is formed of six individuals strands. All strands were scotched 

together using insulation tape to avoid any cable movement. No improvements 

were observed. 

• Several power supplies have been tested. Unfortunately, neither the Raspberry Pi 

nor the Traco Power 5V 4A power supply helps. Increasing/reducing tension 

does not change anything. 

• The USB female socket on the OPC-N3 was used as an additional power supply. 

An old USB cable was cut to connect only the 5V and the ground cable. 

Increasing power supply capacity did not solve the issue. 



 
The Sensors of the Seacanairy 

36 

• The power source of the air pump motor was separated from the sensor’s power 

supply using two separate 220V cables and plugs. The electric isolation of the 

sensors and the motor did not resolve the problem. 

• Increasing/decreasing SPI frequency does not increase communication 

efficiency. Transmitted bytes remains corrupted, and communication keeps 

failing. 

• After disabling the air pump in the software, the OPC-N3 works back again. 

• If the air pump never stops running, then the OPC-N3 works without any 

problem. 

• The addition of an electric noise filter before the air pump motor improves the 

communication efficiency with the sensor. 

• The addition of a delay between the start of the pump and the first 

communication increases the communications' efficiency. 

• Earthing the aluminium plates do not improve the SPI efficiency. 

• Removing the Traco power earth connection does not improve the SPI 

communications. 

• Removing the pump motor earth connection does not improve the SPI 

communications. 

• Increasing the 5V cable diameter between the power supply and the central 

computer should help to keep a stable 5V. However, no considerable 

improvements could be noticed. 

• A capacitor of 1 Farad (5V) was connected in parallel to the power supply. This 

should help the power supply to keep a stable 5V output. 



 
HZS 

37 

2.6.1 Isolation of the pump from the 220V line via a noise reducer 

Adding a noise filter upstream of the pump power supply has reduced the number of 

OPC-N3 errors. The addition of this component is explained in more detail in point 0 on page 

69. 

2.6.2 Increasing the power supply capacity 

Any DC voltage source (in this case, 5V) has a specific maximum power corresponding 

to its maximum current and voltage (𝑃 = 𝑈 × 𝐼). Modern voltage sources have an active 

regulation system that aims to actively rectify the current to a stable 5V regardless of the current 

delivered. However, when the maximum power is reached, the active regulation has no longer 

enough power in reserve to keep a stable voltage. Therefore, noise may appear at the output of 

the DC source, coming from either the 220V line or the rectifier. Therefore, it is recommended 

to install an oversized power supply to stay in the linear zone, the area where the system can 

reach the most stable DC output. For that reason, the voltage source supplied with the Raspberry 

Pi (central computer computing unit) has been replaced by another more powerful unit (4A 

instead of 2.5). As shown in Figure 14, two cables come out of the voltage source: one goes to 

the Raspberry Pi, the other a terminal block situated on the printed circuit board. In practice, 

the two are already connected via the 40 pins female header of the Raspberry Pi. However, the 

thin tracks of the printed circuit may generate some resistance, leading to a loss of voltage across 

the central computer [26]. 

In addition, a 1 Farad capacitor has been added at the output of the voltage source. 

Connected in parallel to the 5V DC lines, one loaded, it helps keeping a stable tension. 

 
Figure 14 Power supply of the central computer (Raspberry Pi and printed circuit) and 1 Farat capacitance 

Source: own work 



 
The Sensors of the Seacanairy 

38 

2.6.3 Addition of a rest period between starting the pump and the first 
communication with the sensor 

Inrush current, also known as Switch-on surge, is the maximum instantaneous current 

of an electric motor at the connection to a voltage source. The sudden increase in current 

generates a deformation of the 220V sinusoid, leading to waves, resonances and harmonics 

oscillating for a certain amount of time in the 220V lines. Those waves can disturb the 5V DC 

voltage source, leading to noise propagation to the central computer. Then, the noise spreads to 

the SPI clock line. Peaks and valleys on the clock line disrupt the OPC-N3, synchronization 

between the central computer and the sensor is lost, and bits are corrupted. This assumption 

stands because adding a delay between the start of the electric motor and the first communication 

helps troubleshoot the communication issues. Delay should be between 5 and 10 seconds. 

3 The 4-AFE gas sensors board from Alphasense  

The 4-AFE is a gas sensor holder produced by Alphasense, allowing the easy connection 

of four gas sensors and one temperature sensor. The set allows the measurement of nitrogen 

dioxide (NO2), ozone (O3), sulphur dioxide (SO2) as well as carbon monoxide (CO). The sensor 

is supplied with 5V by a linear voltage power supply to reduce the noise in the measurements as 

much as possible. Each sensor returns two analogue voltages (main and auxiliary voltages), which 

the central computer's ADC converts into numerical values. Then, the voltages measured can be 

converted into gas concentrations through calibration. Table 8 shows all the products required 

for using this sensor. 



 
HZS 

39 

Table 8 Inventory of the Alphasense gas sensor 

Source: own work, adapted from the Master thesis of Lukas Van der Borght [37] 

No. Piece No. Description 
Price per 

unit 
1 NO2-A43F Alphasense Nitrogen Dioxide electrochemical sensor 48.00 
2 OX-A431 Alphasense ozone electrochemical sensor 50.00 
3 SO2-A4 Alphasense sulphur dioxide electrochemical sensor 48.00 
4 CO-A4 Alphasense carbon monoxide electrochemical sensor 48.00 
5 810-0023-00 Alphasense 4-AFE board 152.00 
6 000-CBLE-03 Alphasense 4-AFE Board cable board-to-board 10.00 
7 PSU30205 Lascar 240V/5V 100 mA linear power supply 40.00 

8 PI-16ADC 
Alchemy Power Analogue to Digital Converter for 

Raspberry Pi 
50.00 

9 
C05a-12-ASB1-

G 
Valcon Wire-to-Board 2mm Straight PCB IDC 

Latched Headers 
~ 0.50 

 

3.1 Wiring of the 4-AFE board and the Analog to Digital Converter 
(ADC) 

Figure 15 shows the wiring of the central computer sensor. Note that the 5V Lascar linear 

power supply powers all the gas sensors while the ADC is powered by 5V from the Raspberry Pi 

via the HAT sockets. For the ADC to measure the voltage on the pins coming from the gas 

sensors, the ADC, the sensors and the power supply must share the same ground. Therefore, all 

the GNDs in the diagram are connected together [37]. Annexe 3 on page 117 is a schematic 

representation of the wiring of the different sensors from the Alphasense sensor board to the 

ADC via the PCB. 



 
The Sensors of the Seacanairy 

40 

 
Figure 15 Schematic representation of the Alphasense 4-AFE wiring 

Source: own work, using draw.io 

3.2 Software function list 

A Python code has been written to measure the electrical voltages from gas sensors via 

the Central computer’s Analog to Digital Converter (ADC). The software code (AFE.py, 

available in Annexe 7 on page 154) is an improved copy of the code written by Lukas Van der 

Borght for his Master thesis [37]. Table 7 is a list of all the software functions. 



 
HZS 

41 

Table 9 OPCN3.py list of functions 

Source own work, some part of code coming from Lukas Van der Borght’s thesis master [37] 

Function Goal Argument Return 

getADCreading 

(adc_address, adc_channel) 

Read tension from the ADC on a certain channel adc_address: slave i2c 
address 
adc_channel: channel where 
to read tension 

Tension between 
channel and 
ground (volts) 

get_temp() 

Measure tension of the temperature sensor 
(Note that the sensor is not located in the gas 
hood.) 

None Dictionary 
containing tension 
in milli volts 
{'temperature raw'} 

get_NO2() 

Measure tension of NO2 main and auxiliary 
electrodes 

None Dictionary 
containing tensions 
in milli volts {'NO2 
main', 'NO2 aux'} 

get_OX() 

Measure tension of OX main and auxiliary 
electrodes 

None Dictionary 
containing tensions 
in milli volts {'OX 
main', 'OX aux'} 

get_SO2() 

Measure tension of SO2 main and auxiliary 
electrodes 

None Dictionary 
containing tensions 
in milli volts {'SO2 
main', 'SO2 aux'} 

get_CO() 

Measure tension of CO main and auxiliary 
electrodes 

None Dictionary 
containing tensions 
in milli volts {'CO 
main', 'CO aux'} 



 
The Sensors of the Seacanairy 

42 

Function Goal Argument Return 

apply_calibration(dictionary) 

Apply calibration to the tensions measured before 
[Not yet finished] 

dictionary: dictionary 
containing tensions from 
other functions 

Initial dictionary 
with ppm 
concentration 
added {'NO2 ppm', 
'OX ppm', 'SO2 
ppm', 'CO ppm', 
'temperature'} 

get_data() 

Get all available data from the 4-AFE Alphasense 
Board (one single instantaneous reading) 

None Dictionary{'NO2 
ppm', NO2 main', 
'NO2 aux', 'OX 
ppm', 'OX main', 
'OX aux', 'SO2 
ppm', 'SO2 main', 
'SO2 aux', 'CO 
ppm', 'CO main', 
'CO aux', 
'temperature', 
'temperature raw'} 

start_averaged_data 

(number_of_measurements) 

Perform multiple readings and makes an average 
Run get_averaged_data() once thread is 
finished to get the data 
Improved for threading application (no display 
prints) 

number_of_measurements: 
number of measurement to 
average, each single 
measurement taking around 
2 seconds 

Dictionary{'NO2 
main', 'NO2 aux', 
'OX main', 'OX 
aux','SO2 main', 
'SO2 aux', 'CO 
main', 'CO aux', 
'temperature raw'} 



 
HZS 

43 

Function Goal Argument Return 

start_background_ 

average_measurement 

(number_of_measurements, 

delay=0) 

Start a new thread to perform averaged reading in 
the background 
Run get_averaged_data() once the thread is 
finished to get the data 
thread = 
threading.Thread(target=AFE.start_averaged_data, 
args=([number_of_measurements, delay]), 
daemon=True) in your own code is preferred 

number_of_measurements: 

number of measurements to 
average, each single 
measurement taking around 
2 seconds 
delay: amount of time in 
between the start of the 
thread and the start of the 
sampling operation 

Nothing 



 
The Sensors of the Seacanairy 

44 

Function Goal Argument Return 

get_averaged_data() 

Read the data of the last 
start_averaged_data() (or 
start_background_average_measurement()) 
performed 

None dictionary{'NO2 
ppm', NO2 main', 
'NO2 aux', 'NO2 
main max', NO2 
main min', NO2 
aux max', 'NO2 aux 
min', 'OX ppm', 
'OX main', 'OX 
aux', 'OX main 
max', 'OX main 
min', 'OX aux max', 
'OX aux min', 'SO2 
ppm', 'SO2 main', 
'SO2 aux', 'SO2 
main max', 'SO2 
main min', 'SO2 
aux max', 'SO2 aux 
min', 'CO ppm', 
'CO main', 'CO 
aux', 'CO main 
max', 'CO main 
min', 'CO aux 
max', 'CO aux 
min', 'temperature', 
'temperature raw'} 



 

45 

3.3 Analogic signal noise reduction 

Previous research performed by Lukas Van der Borght on the 4-AFE board shows that 

there is some noise on the analogue signal [37]. In order to reduce this noise, a function has 

been added to the Python software. Function 

start_averaged_data(number_of_measurements) takes several successive measurements of 

the five sensors and then calculated the average. The function also returns the minimum and 

maximum value read to get an idea of the margin of error. As this operation takes around two 

seconds for each reading loop, the function has been written so that it can run silent in the 

background in a separated Python thread, allowing the central computer to perform other tasks 

simultaneously. A second function is necessary to retrieve measurements taken in the 

background. In conclusion, start_averaged_data(number_of_measurements) takes 

multiple measurements and calculates an average, while get_averaged_data() returns the 

results of the last averaged measurement. Note that the number of successive measurements 

taken can be adapted in the Seacanairy settings file (see point 3 on page 98). 

3.4 Calibration 

The calibration from Lukas Van der Borght has been added to the software [37]. That 

way, the systems performs the necessary calculations to convert the tensions from the gas sensors 

in millivolts to concentrations in ppb. Files containing the calibration settings is shown in Figure 

72 on page 109, and an example of this file is available in Annexe 12 on page 192. 

4 The GPS receiver 

It has been shown that the speed of a ship has a considerable influence on air pollution 

measurements taken on board. As part of the design of an instrument for measuring air pollution 

optimized for use on a ship, it is interesting to relate gas and particulate matter measurements 

with ship speed and position simultaneously. For this purpose, a GPS received has been 

connected to the central computer. It consists of the sensor board VMA430 manufactured by 

Velleman in which the receiver U-BLOX NEO-7M is incorporated. 



 
The Sensors of the Seacanairy 

46 

 
Figure 16 Velleman VMA430 and U-BLOX NEO-7M chip 

Source: own pictures 

4.1 Wiring of the GPS receiver 

Unlike the other sensors explained previously in this paper, the GPS receiver uses UART 

(Universal Asynchronous Receiver Transmitter) communication. This communication protocol 

is made possible by two wires only: the TX (the line on which the data goes out) and the RX (the 

line on which the data enters). Unlike the SPI and I²C ports, there is no clock synchronizing 

communications, and there is neither Master nor Slave. Therefore, both devices must transfer 

their data at the same speed, 9600 baud rate, in the case of the GPS receiver. Annexe 3 on page 

117 shows the wiring from the GPS receiver to the host computer. The RX pins are connected 

to the TXs, and the TXs are connected to the RXs. The PPS (time pulse) is the pulse at which 

the GPS receiver sends location data. This line is not necessary. 

4.2 Software function list 

The process for obtaining the position data from the GPS is much more straightforward 

than the other sensors explained previously. Therefore, there is only one important function. 

Table 10 indicates the function and what it returns. A copy of the code is available in Annexe 8 

on page 168. Note that the software written could also work with other GPS receivers than the 

one used as long as their data are structured in the same way (NMEA 18015) and work with 

UART. 

Table 10 GPS.py function list 

Source: own work 

 
15 Standard for communicating position, heading, speed and time data via several lines of text, whose numerical 
data is separated by commas. 



 
HZS 

47 

Function Goal Argument Return 

get_position() 

Read position 
data from the 
GPS receiver 

None Dictionary{fix time, fix date, fix date and 
time, latitude, longitude, SOG, COG, 
status, horizontal precision, altitude, 
WGS84 correction, current time, accuracy, 
fix status} 

4.3 Faced issues 

4.3.1 Frequency conflict between the OPC-N3 SPI and the GPS UART 

The addition of the GPS receiver and the activation of the UART port interfered with 

the proper functioning of the OPC-N3. After some extensive research, the hypothesis emerged 

of a conflict between the frequencies of the SPI port of the OPC-N3 and the UART port of the 

GPS receiver. This problem and its solution are explained in point 2.5.3 on page 34. 

4.3.2 Random UART port opening problem 

After resolving the conflict issue between the SPI port and UART port, another issue 

appeared. Randomly, the Python software fails to activate the UART port. Since it cannot be 

started, it is therefore impossible to read the data from the GPS receiver. 

The Raspberry Pi 3B + has two UART ports. The first one is the PL011. This port is 

controlled by an independent chip and is therefore neither influenced by the CPU workload 

nor its frequency. The PL011 is, therefore, more stable, more reliable, and performs better in 

the background. The second UART port is called the miniUART, a virtual port directly 

connected to the CPU, accessible from the Raspberry Pi purchase via the GPIOs (pin 8 and 10). 

Therefore, a variation in the frequency of the processor has a direct influence on the miniUART 

behaviour. Remember that the communication protocol is asynchronous and that there is no 

clock line between the devices connected to that bus. Devices are therefore supposed to 

communicate at a constant and stable frequency. Therefore, a slight variation in the CPU 

frequency can disrupt the miniUART and consequently induce corruption or loss of data. 

Initially, the Raspberry Pi's Bluetooth is connected to the PL011, so Raspberry Pi users are 

supposed to use the miniUART for their electronic projects. However, when the Raspberry Pi 

workload increases (internet, TeamViewer, the addition of sensors activation of multiple 

communication protocols), the miniUART is no longer accurate enough. Therefore, it is 

necessary to apply changes in the Raspberry Pi operating system to deactivate the Bluetooth and 

divert the PL011 on the GPIO pins [21,22,28,35]. 



 
The Sensors of the Seacanairy 

48 

Before making any changes to the Raspberry Pi file system, it is better to back up the 

whole SD card, using Win32 Disk Imager. In this way, if we were to miss a step and the Raspberry 

Pi no longer starts, we can put the backup back on the SD card and start over on the old 

configuration. 

• Start by executing the display command that lists the Raspberry Pi's various ports: 

ls -l /dev*. In the list, if serial0 fit with tty0, then it means that Bluetooth 

is connected to PL011. Then the further steps must be applied. If serial0 go 

with ttyAMA0, then it means that PL011 is already connected to the GPIO and 

that no further steps are necessary [21]. 

 
Figure 17 ls -l /dev* on Raspberry Pi, UART configuration 

Source: own work 

• Open a new terminal and type the function: sudo nano /boot/config.txt. 

After execution, a nano GNU will open. Scroll to the bottom of the file and add 

dtoverlay=pi3-disable_bt. The addition of comments as done in Figure 18 

helps keeping a track in the system modifications. Finally, to save and exit the 

nano GNU, press on ctrl+x, then press enter and O (do not confuse the letter 

with the number zero) [21]. 



 
HZS 

49 

 
Figure 18 Switching UARTs on the Raspberry Pi (config.txt) 

Source: own work 

• Open a new terminal and execute the following function:  

sudo nano /boot/cmdline.txt. Remove from the file the following: 

console=serial0,115200. Close nano GNU by pressing ctrl+x, then enter 

and O (do not confuse the letter with the number zero) [21]. 

• Disable the Bluetooth UART service by executing the following command: 

sudo systemctl disable hciuart. A message should then indicate the service 

deactivation [21]. 

• Restart the Raspberry Pi. After boot, check that both UARTs has been well 

swiped. Open a new terminal and execute ls -l /dev*. Now, serial0 should 

be ttyAMA0. If it is not the case, then reboot again [21]. 

5 Sensirion Mass Flow Meter 

The flow sensor uses the I²C protocol as the CO2 sensor. The technical specificities of 

the communication protocol have already been explained in point 1.1 on page 5. By measuring 

only one parameter, the air flow, the use of this sensor is much easier. No problem was 

encountered. The Python code for the use of this sensor can be found in Annexe 9 on page 176, 

and the diagram of the electrical connections is in Annexe 3 on page 117. 



 
The Sensors of the Seacanairy 

50 

6 The RTC (real-time clock) – DS3231 

When the central computer gets out of power, it lost track of time and restarts on January 

1, 2000. Indeed, the Raspberry Pi has been designed to stay connected to the internet, where it 

synchronizes to server time over the cloud. However, for the Seacanairy to link the measurement 

with the time and date, a Real-Time Clock must be connected to the central computer. The 

module used is the DS3231. The sensor works via I²C communication. The RTC wiring is shown 

in Annexe 3 on page 117. Pin 1 fits with the pin at the bottom of Figure 19. 

  

Figure 19 RTC DS3231 chip 

Source: own picture 

6.1 Faced issues 

6.1.1 I2C pull-up resistors 

When adding the RTC and the Sensirion Mass Flow Meter to the Seacanairy, the central 

computer lost communication with the CO2 sensor. The cause is the excess of resistors connected 

in parallel to the I²C bus. As explained in point 1.6.2 on page 17, the RTC has its own welded 

pull-up resistors. However, these resistors are already introduced by another sensor connected to 

the same bus, and the resistances of the RTC are therefore in excess. Therefore, they should be 

removed. Notice that in Figure 19, two resistors have been unsoldered at one of their ends. 

6.1.2 Integration on the PCB 

During the design of the PCB (version 2.0), the pin order was reversed. It induced the 

connection of the RTC in the other direction, hindering the connection of the CO2 sensor. To 

avoid ordering a new circuit board, the female connection of the RTC has been unsoldered and 

resoldered on the other side. That way, the connexion of both the RTC and the CO2 sensor is 

possible. Figure 20 shows the normal shape on the left and the modification on the right. Version 

3.0 of the PCB resolves this error (see Annexe 4 on page 119 for a schematic of the two different 

versions). 



 
HZS 

51 

   
Figure 20 Relocation of the DS3231 socket to solve the PCB design problem 

Source: own work 





 

53 

Chapter 2 
Combining components into 
a measuring device 

This chapter focuses on connecting all the components (explained in detail in the earlier 

chapter) to create one instrument. Sensors are interconnected in diverse ways. Firstly, a tube 

connects all the sensors in series, and a pump pushes a controlled amount of air through the 

sensors. Secondly, sensors are connected according to their specific wiring characteristics to the 

central computer via a custom motherboard. Finally, there is a physical connection between the 

sampling instrument and the suitcase. 



 
Combining components into a measuring device 

54 

 

   
Figure 21 The case of the Seacanairy 

Source: own work 

1 Building the device into a transportable suitcase  

The goal of the Seacanairy was to develop a measuring device inside a suitcase so that it 

is portable and can be used in maritime conditions. This means that the measuring system must 

be incorporated into an impact resistant box that is watertight and easily transportable. For this, 

a yellow-coloured Pelican Storm Case iM2720 was selected. The case has an O-ring sealing that 

protects the instruments from water jets, and the plastic is impact resistant. It is large enough 

(55.9 cm x 43.2 cm x 25.4 cm) for future improvements. Instruments are fixed on three 

aluminium plates installed in the casing. Table I shows the required components. 



 
HZS 

55 

Table 11 Inventory of the components needed to build the casing 

Source: own work 

No. Supplier Piece No. Name 
Price 

per unit 
Quantity Price 

1 

Pelican 

iM2720 
Pelican Storm Case, yellow, 

55.9 x 43.2 x 25.4 cm 
306.50 1 306.50 

2 
iM27XX-
BEZEL 

Bezel-Kit Lid iM27XX for 
Peli Storm Case iM2700 

iM2720 iM2750 
The frame on which the lid and 

top plates are placed. 

95.78 2 191.56 

3 
John 
Steel 

 
Raw and shiny aluminium, 

filmed, 2 mm thickness 
Case Panels16 

 3 106.08 

4 

Clabots17 

M5 
Screws to fix the frames to 

the case 
 

8 
 

N
eg

lig
ib

le
 

 Autoblocking nuts  8 

5 M4 
Screws to fix the top and lid 

plates to their frames 
 1618 

6 

M6 

Screws to fix the bottom 
plate to the case  

 4 

 Autoblocking nuts  8 

 

Washers 
Placed inside the case to divide 
the load from the bold on the 

plastic 

 4 

7  
Watertight gaskets 

Tighten screws fixing bottom 
plate, placed outside of the case 

 4 

 
16 See Annexe 2 on page 85 for their schematics. 
17 Local do-it-yourself supplier. 
18 The number of screws also depends on the accuracy of the drillings position.  



 
Combining components into a measuring device 

56 

 
Figure 22 Pelican Storm Case iM2720 before/after 

Source: Waterproof Cases [25] (left), own work (right) 

1.1 Three aluminium plates in the casing 

Three aluminium plates must be fixed in the casing using frames and screws to install all 

the components in the case. In that way, the case contains three levels of aluminium plates. 

1.2 The bottom plate 

The bottom plate is fixed on four M6 bolts fixed through the bottom of the case. Bolts 

are fitted with anti-vibration screws and watertight washers (see Figure 23 on page 57). The 

dimensions of the plate can be found in Figure 74 on page 116. The following components are 

fixed to the bottom plate: the M&C air pump, the 220V electricity junction box, a 220V plug, 

the 220V noise filter, the particulate matter sensor (OPC-N3), and the air filter (see Figure 24 

on page 57). Components have been disposed to keep some free space for further improvements. 

Also, the layout must be thought out so that no component touches each other when closing. 



 
HZS 

57 

 
Figure 23 Bottom plate fixing bolts (and the four bolts) 

Source: own work 

 
Figure 24 Picture of the bottom plate and its components 

Source: own work 

1.3 The cover plate in the case lid 

The cover plate is placed on a frame via four M4 bolts (see point 1.5 on page 58 

concerning drilling), and the frame is fixed into the lid with twenty rivets. All holes made inside 

the case are waterproof via rubbered washers included in the bezel kit's purchased package. Cover 

plates hold the touchscreen and the GPS receiver (see Figure 25). A cut-out on the hinge side 

plate allows cables to pass from the lower part to the upper part. Dimensions of the aluminium 

plate can be found in Annexe 2 on page 115. 



 
Combining components into a measuring device 

58 

  
Figure 25 Cover plate (in the case lid), back and front side 

Source: own work 

1.4 The top plate 

The top plate is placed on a frame via four M4 bolts (see point 1.5 concerning drilling), 

and the frame is fixed to the case via eight M5 bolts. That way, the frame can be detached if 

necessary. All holes made inside the case are waterproof via rubbered washers included in the 

bezel kit's purchased package. Dimensions of the aluminium plate can be found in Annexe 2 on 

page 115. The top frame contains on the front a USB and ethernet plug connected to the central 

computer. The backside contains all the sensors and electronical components, such as the central 

computer, the Linear 5V transformer, the CO2 sensor, the Alphasense 4-AFE Gas sensor, and 

the Sensirion Mass Flow Meter. A cut-out on the hinge side plate allows cables to pass from the 

lower to the upper. 

  
Figure 26 Top plate, back and front side 

Source: own work 

1.5 Drilling the plate to fix it on the frame 

Since the suitcase is not perfectly rectangular, the size of the frame must be able to adapt 

to match the shape of the suitcase according to the desired height. This flexibility is achieved via 

the plastic sliding corners. Before drilling the holes in the plate, you must first position the frame 



 
HZS 

59 

at the desired height, slide the corners so that the frame fits the shape of the suitcase, then 

remove the frame without changing the frame dimensions, and then drill the holes in the right 

places. Improper execution of this step leads to a deformation of the frame when tightening the 

frame fixing bolts and an offset between the holes in the frame and the holes drilled. 

2 Connecting all sensors with tubes  

In order to protect the sensors from the external environment and enable them to be 

calibrated, the external air to be measured must be conveyed to the sensors by means of tubes 

and a pump. The air is therefore forced to pass in series from one sensor to another. Therefore, 

in the next step, it will be possible to connect the measuring instrument to calibration gas 

cylinders to calibrate everything. 

The Seacanairy is crossed by a tube in which circulates the air to be measured. This tube 

connects all the sensors in series (see Figure 24 on page 57), meaning that the same air passes 

from one sensor to another. As the sensors are not designed to be connected to a tube, they have 

been positioned in small tights boxes connected to the tube. At each tube intersection, there is 

a connector that allows the tightest possible junction between the tube and the box. This allows 

a pump to be located at the end of the line and to generate an airflow in the piping system. 

Figure 28 is a picture of the piping system of the Seacanairy, and Table 12 indicates all the 

components necessary to build a similar piping system. The order in which the sensors, pumps 

and filters were connected was decided as a result of the following thought. The most sensitive 

sensor in this project is the OPC-N3 due to its laser and air illumination system (more detailed 

explanation on page 19 at point 2). Particulate matter can stick along the tube's walls and 

accumulates behind junctions and other bends [2]. Therefore, the sensor tube must be as short 

and straight as possible to minimise the tube-induced error. On the other hand, the box 

containing the sensor does not support pressure. Therefore, it should be located on the suction 

side of the pump, and the vacuum will keep the box well closed and tight. The M&C pump has 

some ability to suck and blow air. The OPC-N3 and the filter were placed before the pump for 

the reasons explained above. In order not to overload the pump on the suction side (before the 

pump), the remaining sensors were positioned on the pressure side (after the pump). 



 
Combining components into a measuring device 

60 

 
Figure 27 Schematic of the inboard piping system 

Source: own work, using draw.io 

 
Figure 28 Picture of the piping system inside the Pelican case 

Source: own work 

Following goals were expected while designing the sampling system. Firstly, all the sensors 

must be kept protected from any physical impact and water splashes. This is guaranteed by the 

Pelican Case and watertight cable glands. Moreover, all the sensors must be connected to the 

same piping system. It is expected that they all measure the same air at the exact moment. Then, 

the piping system must be as gas-tight as possible to avoid any gas leakage and distortion in the 

measurements. Finally, the air volume inside the whole piping system must be as small as possible 

for better calibration. That way, the calibration process would require less calibration gas. 



 
HZS 

61 

Table 12 Inventory of the piping system 

Source: own work 

No. Supplier Piece No. Name 
Price 

per unit 
Quantity Price 

1 

M&C 

02B1000 
PTFE tube, DN 4/6 

Sampling tube, internal diameter 
4 mm, external diameter 6 mm 

10.20 10 m19 102 

2 10T1000 
Hose cutter 

Hose cutter designed for precise 
perpendicular tube cuts 

22.70 1 22.70 

3 05V1060 

GE PVDF DN 4/6 - G 1/4" 
Connector from 4/6 tube to male 

screw type G size ¼” 
Used for connecting the pump, 

the filter, and the CO2 sensor to 
the piping 

11.30 8 90.40 

4 05P1010 
MP-F 05 R, 230 V 

Bellow sampling pump, 320 
NL/h, PTFE, needle valve 

971.00 1 971.00 

5 05P1050 
Mounting bracket for MP-F 
Support for the pump with anti-

vibration pads 
59.00 1 59.00 

6 01F2200 
FT-2T 

Filter for universal gas sampling 
use 

490.00 1 490.00 

7 90F0002 
Filter element F-2T 

Compatible spare filter 
27.70 1 27,70 

8 

Swagelok 

SS-6M0-
61 

Stainless Steel Swagelok Tube 
Fitting, Bulkhead Union, 6 

mm Tube OD 
Case Inlet and Outlet 

connections, OPC-N3 box 
connectors 

 4  

9 
SS-8M0-6-

6M 

Stainless Steel Swagelok Tube 
Fitting, Reducing Union, 8 

mm x 6 mm Tube OD 
8 mm outer diameter to 6 mm 
outer diameter tube converter 

Used in the OPC-N3 box 

 1  

10 
Brico20 

 Small cylindric electric junction 
box for the CO2 sensor box 

 1  

11  Junction box electric connection 
gland and their screws 

 2  

 
19 This is the minimum length upon purchase. 
20 Local do-it-yourself supplier. 



 
Combining components into a measuring device 

62 

No. Supplier Piece No. Name 
Price 

per unit 
Quantity Price 

12  

M3 threaded rods and their 
washers and bolts 

For pulling the OPC-N3 sensor 
against a Swagelok connector and 

a gasket 

 4  

13  
Teflon tape 

To improve air system sealings 
1.99 1 1.99 

13 Traffic20  
Lunch box 
OPC-N3 box 

3.00 1 3.00 

2.1.1 The use of PTFE tubes 

An essential characteristic in the design is the tube material. Reactive gases can be 

absorbed by the piping material, the sensor housing, and the adapters, giving inaccurate low 

readings and an increased response time21. It is why some provisions should be taken while 

working with any piping or housing system [7]. 

Different materials are currently in use for gas sampling devices such as tubes, pumps, 

sensor housings, valves, and elbows. A popular material is PTFE (polytetrafluoroethylene), which 

belongs to the material type known as Teflon. The polymer is hydrophobic22 and has a low 

friction coefficient. PTFE is used in many applications that require high temperature, chemical 

resistance and low friction, such as wiring insulation, high-temperature protection, coating of 

non-stick pans, and lubrification [27]. PTFE mostly has a milky/white appearance. The second 

material often used in gas sampling applications is FEP (fluorinated ethylene propylene). FEP is 

chemically speaking similar to PTFE, except for its transparency and thermal resistance [12]. A 

last alternative material is Tygon (Saint-Gobain). It is a brand name to a large polymer tubing 

family. Some of them are composed of multiple layers of proprietary composition. Tygon is often 

used in the chemical industry, in laboratories and in pharmaceutical [29]. Some tubes are 

resistant to any chemical product, either gaseous, liquid or slurry [30]. 

In 2008, the Health and Safety Laboratory held a study for the Health and Safety 

Executive (English parliament) concerning the effect of tubing materials on gas detectors and 

sampling systems. Using gas detectors, different tubes materials, and tube diameters, they 

measured the delay between a change in gas concentration at the inlet of the tube and its 

 
21 Amount of time between an event and its detection. 
22 Which is not attracted by water. 



 
HZS 

63 

detection at the end. They tested PTFE, FEP and Tygon tubes with Hydrogen Sulphide (𝐻2𝑆), 

Nitrogen Dioxide (𝑁𝑂2), Nitric Oxide (𝑁𝑂) and Toluene (𝐶7𝐻8). Their recommendations are 

summarized below [7]. 

• PTFE and FEP can be used with minimal effect when sampling 𝐻2𝑆, 𝑁𝑂 and 

𝑁𝑂2 [7]. 

• Tygon may be used when sampling 𝐻2𝑆, 𝑁𝑂 and 𝑁𝑂2 if PTFE and FEP are not 

available providing the delay time is not an issue, but the tube dimensions must 

be as small as practically possible without restricting the flow rate of the sampling 

instrument [7]. 

• Tygon is not suitable for use in sampling 𝐶7𝐻8 but PTFE and FEP may be used 

providing the delay time is not an issue [7]. 

• Taking into account the previous findings and the principal supplier catalogue 

(see Table 12 on page 61), it was decided to use PTFE pipings. 

2.1.2 Air pump 

As long as all the sensors are connected in sealed tubes, an air pump is necessary in order 

to circulate the outside air through all the collectors. 

The air pump used (article 5 in Table 12 on page 61) was purchased at M&C. Its nominal 

flow rate is 5 slm (standard litre per minute23), which corresponds to the air volume required by 

the OPC-N3 (particulate matter sensor). The 220V motor rotates a crankshaft converting the 

rotary motion into a reciprocating motion operating a PTFE bellow. For easier mounting inside 

the case, the pump head has been rotated24 90° to reduce its height. This pump contains only 

one bellow and is therefore single-acting: no air enters when air exits, and vice versa. As a result, 

the movement of the air is jerky, leading to some troubles for some sensors. The screw protruding 

from the side of the pump activates a bypass valve (or needle valve – see Figure 30) in order to 

regulate the airflow. The pump is supplied with a mounting bracket and four anti-vibration bolts 

(article 6 in Table 12 on page 61). 

 
23 Gas flowrate in standard temperature and pressure conditions (0°C, 1 bara). 
24 During this step, be sure to keep the pump head tight against the motor. Otherwise, the crankshaft and the 
bellows pump are no longer in the same plane, risking damage to them. 



 
Combining components into a measuring device 

64 

   
Figure 29 Air pump in its initial situation (on the left), unbolted, and rotated (on the right) 

Source: own work 

 
Figure 30 Operation of the needle valve of the M&C air pump 

Source: M&C MP-F05/R instruction manual [20] 

2.1.3 The particulate matter sensor (OPC-N3) box 

The design of the OPC-N3 does not facilitate the connection to the tube system. 

However, it is provided with a seal around its air intake with four threads. This makes it possible 

to compress a 6mm diameter “through bulkhead” Swagelok connector against the OPC-N3 

gasket. Unfortunately, all electrical junction boxes found on the market were a few millimetres 

too small in height to place the OPC-N3 in the same way as the CO2 sensor (see 2.1.3 on page 

64). This is the reason why a less robust box had to be used. Figure 35 shows how the tight 

connection to the OPC-N3 is performed, and Figure 31 shows how the cylindric box is fixed to 

the case panel. 



 
HZS 

65 

  
Figure 31 The OPC-N3 box 

Source: own work 

A Swagelok connector (article 9 in Table 12 on page 61) is compressed between the box 

and the OPC-N3 gasket via four threaded rods. The air leaving the sensor then ends up in the 

box and is then sucked through another Swagelok connector to the pump. Connections are 

sealed with Teflon, insulating tape and hot glue. 

 
Figure 32 Connection of the tube system to the OPC-N3 via a Swagelok connector and four threaded rods 

Source: own work 

Finally, the sensor is fixed as close as possible and in line with the air intake to avoid any 

disturbance of the measurements caused by the potential accumulation of fine particles on the 

walls and the tubes' roughness. Finally, a mounting bracket was crafted from the remaining 

aluminium plates from the touchscreen cut-out. Figure 33 shows the OPC-N3 in its final 

position. 



 
Combining components into a measuring device 

66 

 
Figure 33 Fixing the OPC-N3 box to the bottom case panel 

Source: own work 

Due to its operation by means of a bellows and a crankshaft, the air pump generates a 

jerky airflow (see point 2.1.1 on page 62). The OPC-N3, using laser scattering to detect 

particulates, requires the most regular airflow possible. It is believed that the cover flexibility of 

the sensor box would absorb part of the air vibrations. In addition, placing the filter between the 

pump and the OPC-N3 helps to stabilize the airflow. 

2.1.4 The CO2 sensor box 

The shape of the CO2 sensor is absolutely not suitable for connecting a pipe system. For 

this reason, the sensor was placed in a small enclosure. 

The CO2 sensor has been placed in a small electrical junction box. The connection with 

the pipe system is made via an M&C PTFE connector (article 3 in Table 12 on page 61) which 

has been milled to fit into an electric gland cable (see Figure 35). In this way, the connector is 

clamped in the cable gland in the same way as an electric cable would have been. To increase the 

seal, Teflon has been added between the box and the cable gland. The electric cable passes 

through a plug initially designed to close the perforations of junction boxes. Instead, the plug 

was perforated, the cable passed and then sealed with hot glue. 



 
HZS 

67 

  
Figure 34 The CO2 box 

Source: own work 

  
Figure 35 Shaping of the M&C connector and assembly of waterproof connectors 

Source: own work 

2.1.5 The Sensirion mass flow meter 

The jerky movement of the air dramatically alters the flow rate readings by the flow 

sensor, which should therefore be placed in the same way as the OPC-N3 (see point 2.1.3). Since 

the flow sensor has been designed for medical purposes and pure air sampling, it has to be placed 

after the filter to prevent fouling the measuring cell and the internal filter. The problem of air 

fluctuation can be solved via the software by taking the average of several successive 

measurements. 

2.1.6 The Alphasense 4-AFE gas sensor 

Gas sensors have been located at the end of the tube on the pressure side because they 

are not sensitive to airflow vibrations in opposition to the other sensors discussed above. 

2.2 The electrical connection of all hardware components 

The central computer and the air pump must be connected to a 220V AC source to 

operate. At the same time, several components such as the ADC and sensors must be connected 



 
Combining components into a measuring device 

68 

with each other and to power supplies of 5 VDC. All these connections require many wires, and 

this introduced errors (bad or unstable connections, moving wires generate noise) For that 

reason, a PCB board was designed that replaces most of the wires. At the same time, the power 

supplies must generate a stable voltage without any noise on the line. A maximum of connections 

was made in a junction box using Wago type connectors (article no. 5). A female connector 

(article no. 2) to be screwed into the Seacanairy male plug (article no. 3) provides the 220V 

supply. Articles can be found in Table 13. 

Table 13 Electrical connections for power supply 

Source: own work 

No. Supplier Reference Name 
Price 
per 
unit 

Quantity Price 

1 
Cebeo 
Wavre 

 
2 phase 1 earth + 
plug cable, 3 m 

length 
8.27 1 8.27 

2 

RS 
Components 

934125100 
CA 3 LD 

Hirschmann 
Cable Mount 

Connector, 3 + 
PE Contacts 

220V connector, 
cable side 

10.78 1 10.78 

3 
932322100 
CA 3 GS 

Hirschmann 
Flange Mount 
Connector, 3 + 

PE Contacts 
220V connector, 
Seacanairy side 

4.33 1 4.33 

4 

Brico 

 Junction box  1 Negligible 

5  

Wago 5 way 
connectors 

Connect 220V 
wires 

 4 6.79 

6 Cebeo  

220V one strand 
electric wire 

Pull cables between 
components 

 
5m ground, 5m 
blue, 5m bruin  

8.27 

7   

Traco power 
TPC-030-105 

Supply 5V (max 
4A)  to the 

Raspberry Pi and 
the sensors 

 1 Unknown 



 
HZS 

69 

No. Supplier Reference Name 
Price 
per 
unit 

Quantity Price 

8   

Tokin noise 
filter LF205A 

250V 5A 
Electrically isolate 

the M&C air 
pump to the other 

components 

 1  

9   

Lugs 
Earth the 

aluminium plates, 
and make the 

connection of the 
pump to the 

TOKIN noise 
filter 

 
2 rounded 
5 female 

disconnects [5] 
 

 

 

Figure 36 Picture of the 220V derivation box (on the left), and the Tokin noise filter (on the right) 

Source: own work 

2.2.1 Electric noise on the 220V line 

As explained in point 2.1.1 on page 62, the pump generates some electrical noise when 

running, which interferes with the proper functioning of the OPC-N3. The problem was solved 

by connecting a noise filter (article 8) between the pump and the 220V power supply. The relay 

operated by the central computer has been positioned upstream of the filter so as to prevent it 

from being permanently under voltage. The connections are made by means of female lugs 

(article 9), protected by heat-shrink tubing. A schematic of the connections is to be found in 

Figure 37 as well as in Annexe 3 on page 117. Do not confuse the line side (voltage source) with 

the load side (pump). 



 
Combining components into a measuring device 

70 

 
Figure 37 Schematic of the wiring of the Tokin noise filter on the M&C air pump 

Source: own work, using draw.io 

3 Central computer 

The central computer is composed of three main parts: the Raspberry Pi (the computing 

unit), the analogue to digital converter, and the custom printed circuit board, making possible 

the connection of those two parts to the various sensors. Those three components are compatible 

with HAT (hardware on top) and form a single unit, as shown in Figure 38. 

 
Figure 38 Central computer unit (from bottom to top: Raspberry Pi, Pi16-ADC, custom printed circuit board) 

Source: own work 

3.1 The Raspberry Pi 

A central computer manages the Seacanairy measuring system. The device used is a 

Raspberry Pi 3B+. It is a single piece nano-computer from the ARM family designed for do-it-

yourself electronics. The computer is equipped with an Ethernet connection, Wi-Fi, Bluetooth, 

four USB, audio 3.5 mm jack, CSI camera interface, DSI connector for the official screen, a 

MicroSD socket for storage, and HDMI. These are standard functionalities that can be found 

on any recent computer. In addition, the Raspberry Pi has two connector rows, each with 20 



 
HZS 

71 

pins that are directly linked to the BCM2837 chipset. Those General Purpose Input/Output 

(GPIO) can be used as input or output to communicate with any device or sensor, either 

controlled manually by any self-made software or automatically using designated pinout for 

particular purposes [19]. 

3.2 The Analog to Digital Converter 

The Raspberry Pi can communicate with digital sensors but cannot process any analogue 

signals. Therefore, an Analog to Digital Converter is necessary in between the gas sensor and the 

Raspberry Pi. The device used is the PI-16ADC from Alchemy Power. It provides a 16-bits 

conversion, which leads to a reading accuracy of 38.1 microvolts [1]. In addition, it is compatible 

with a HAT add-on board, as the ADC, that can easily be plugged on top of the Raspberry Pi, 

forming a single unit with the Raspberry Pi. 

Table 14 Inventory of the Central Computer 

Source: own work, Master thesis of Lukas Van der Borght [37] 

No. Piece No. Name Quantity Price 
1 Raspberry Pi 3B+ Raspberry Pi 3B+ 1 50.00 

2 
Alchemy Power 

PI-16ADC 
Analogue to Digital Converter 1 50.00 

  Custom Printed Circuit Board By two units 53.36 
 

 
Figure 39 Picture of the Raspberry Pi 3B+ (on the left) and the PI-16ADC (on the right) 

Source: Raspberry Pi website [19] and Alchemy Power website [1] 

3.3 Printed Circuit Board (PCB) 

During the Seacanairy development phase, a breadboard was used to test all the electrical 

connections between the sensors and the central computer. Figure 40 illustrates the complexity 

of the connections and the tangle of jumper cables (fast prototyping) after connecting the sensors 

accordingly. This kind of fragile connection takes up space, is subject to electrical noise and easily 



 
Combining components into a measuring device 

72 

disconnect. The production of a printed circuit allows all the required connections to be 

condensed into a tiny plastic plate. The following points summarize the steps followed to build 

the Seacanairy printed circuit board using the software KiCad. 

Table 15 Inventory of the printed circuit board 

Source: own work 

No. Supplier Reference Name 
Price 
per 
unit 

Quantity Price 

1 Eurocircuits  
Custom Printed Circuit 

Board 
 2 53.36 

2 

RS 
Components 

SSW-101-
02-T-S 

Samtec, SSW 2.54mm Pitch 
1 Way 1 Row Straight PCB 

Socket, Through Hole 
Single female header for 

soldering on the PCB into ADC 
connections 

0.43 
2 packs of 
10 units 

8.60 

3 1725656 

2 way PCB vertical mount 
terminal,2.54mm 

Terminal block for 5V and 5V-
linear power supply 

1.81 
1 pack of 
5 units 

7.48 

4 
IDSD-04-
D-10.00 

Samtec Slim Body Double-
Row IDC Socket 

Assemblies, 0.100" Pitch 
2 row 8 way cable for the flow 

meter sensor 

3.98 1 3.98 

5 
SSQ-120-
03-G-D 

Samtec, SSQ 2.54mm Pitch 
40 Way 2 Row Straight PCB 

Socket, Through Hole 
40 way 2 row female header 

with long legs for future GPIO 
use 

8.70 1 8.70 

6 
15133-
0606 

Molex Pico-Clasp OTS Wire 
to Board Cable Assembly 1 

Row, 6 Way, 600 mm length 
Cable between the OPC-N3 
and the printed circuit board 

5.45 2 10.90 

7 

Mantec 
Namur 

VMA406 
5V relay module 

To operate the 220V air pump 
6.90 1 6.90 

8 
TSW-140-

09-G-S 

Pin Header 40 way 1 row, 18 
mm, golden 

Multiple purpose: CO2 sensor 
connection on the sensor side 

and PCB side, male header for 
ADC connection, male header 
for the Real Time Clock, male 

header for the GPS 

1.02 1 1.02 



 
HZS 

73 

No. Supplier Reference Name 
Price 
per 
unit 

Quantity Price 

9 
501331-

0607 

MOLEX 1.00mm Pitch, 
Pico-Clasp PCB Header, 

Single Row, Vertical, Surface 
Mount, 6 Circuits 

Connection of the OPC-N3 on 
the printed circuit board 

6.61 
1 pack of 
10 units 

6.61 

10 
15133-
0603 

Pico-Clasp 1 row 6 way 30 
cm cable 

6.61 4 units 26.45 

11  

Connector with cable for 
PCB, 2.54 pitch, 4 way, 1 

row 
For connecting the CO2 sensor 
through its 2.54 pitch female 

header 

0.95 2 1.90 

12 

Amazon 

 

Yuhtech Hex Spacer Screw 
Nut Assortment (M2.5) 

To fix the different parts of the 
mainframe together 

9.06 1 9.06 

13  
POPESQ® wire-to-board 

connector 4 way 1 row, 20 
cm length 

5.39 
2 packs of 

3 units 
10.78 

 

 
Figure 40 Overview of the wiring of the first prototype (on the left side) and overview of the wiring of a similar 

system using the PCB-board (on the right side) 

Source: own work 

3.3.1 General procedure for designing a PCB 

The tracing of a printed circuit board is achieved in several stages: firstly, the drawing of 

the electrical diagram (also called schematic), the attribution of a footprint to each symbol, the 

acquisition of the characteristics of the printer where the circuit board will be printed, and finally 

the tracing of the printed circuit. 



 
Combining components into a measuring device 

74 

The first step consists of schematically drawing all the connections of our breadboard 

into one single schematic. This diagram is composed of symbols representing one specific 

component: a resistor, a connector, or a terminal block. For connectors, symbols are generics 

and disregard the physical properties of the connection (distance between pins, through-holes, 

or surface mounted connectors). After inserting all the required symbols, wires are pulled to 

make the desired connections. Instead of drawing lines in all directions, names are given to each 

wire, knowing that all wires having the same name are interconnected. 

Once the schematic is drawn, footprints are linked to each symbol. The footprint is the 

name given to the physical shape and geometry of a symbol present in our schematic once 

mounted on the printed circuit board (see example in Figure 41). Through this step, each symbol 

gets physicals properties, such as the fixing type (surface mount or through holes), the spacing 

between the pins, the number of rows, and the numbering of the pins (pair, odd, clockwise, or 

counterclockwise). 

 
Figure 41 Comparison of the symbol on the schematic with the footprint on the printed circuit board 

Source: own work, using KiCad 

The circuit board drawing starts by studying the printer restrictions such as the minimum 

track width, hole diameter, via holes size, and the number of available layers. Then, those 

parameters are inserted in KiCad, which will care to respect them. 

Sadly, KiCad does not draw the PCB automatically. All the footprints need to be 

manually placed where wished and required connections to be manually drawn. Since it is a 

print (two dimensions), no line can cross, as this would generate a short circuit. The position of 

the footprints must avoid as much as possible the crossing of lines. As a last resort, vias are used: 

perforations are made, allowing the electricity to pass from one layer to another. As a result, it 

takes a few hours to find the best drawing (see Figure 42). 



 
HZS 

75 

 
Figure 42 Positioning of the footprints and tracing of the electrics lines 

Source: own work, using KiCad 

Finally, the required components are soldered to the PCB. Table 15 on page 72 lists all 

the components necessary for creating the PCB. See Annexe 3 and Annexe 4 on pages 117 and 

119 for design details. 

  
Figure 43 Printed circuit as supplied by Eurocircuits 

Source: own work 



 
Combining components into a measuring device 

76 

 
Figure 44 Welding the connectors on the custom PCB 

Source: own work 

3.3.2 Seacanairy wiring 

The global electrical wiring of the Seacanairy is shown in Annexe 3 on page 117. Sensor 

specific wirings are explained accordingly in Chapter 1 from page 3. 

3.3.3 The connection between the Analog to Digital Converter (ADC) and the 
custom circuit board 

The main difficulty in designing the printed circuit is the connection between the printed 

circuit board and the ADC located one floor below. In order to remove any electrical cable, it 

was necessary to match the perforations in the printed circuit board with the perforations in the 

ADC. First, the three-dimensional file provided by the ADC manufacturer (Alchemy Power) has 

been converted to a KiCad footprint using FreeCAD with the KiCadStepUp add-in. Next, 

several shapes' projections and clippings have been carried out to constitute the different layers 

required by KiCad. Then, the created footprint has been transferred to the KiCad library. Finally, 

the perforations have been added, and the pads numbered in the same logic as the symbol (the 

difference between symbol and footprint is explained in more detail in point 0 and Figure 42 on 

page 75). 

The ADC has been designed with a pitch (distance between the perforations) of 3 mm 

instead of 2.54 (standard). This kind of part being untraceable, single headers (item number 2 

in Table 15 on page 72) were purchased and soldered where required.  



 
HZS 

77 

 

Figure 45 Connection between the printed circuit board and the ADC 

Source: own work 

  
Figure 46 Female header on the ADC and male header on the printed circuit board 

Source: own work 

3.3.4 Tips for a successful printed circuit 

• After placing the footprints and before starting drawing in KiCad, check that it 

is physically possible to place all the necessary connectors on the board (avoid 

putting two connectors too close). 

• Make sufficiently large perforations. This facilitates the desoldering of 

components. 

• Place sufficiently large pads25. This makes it easier to weld through holes 

components because the weld has a larger surface to deposit. 

 
25 Name given to the conductive surface around a perforation on a PCB on which the solder is placed. 



 
Combining components into a measuring device 

78 

• Use through holes perforations as vias (to create a connection from one layer to 

another). This allows for decreasing the number of perforations on the board and 

spare place on the PCB. 

• Place the tracks on the opposite layer from which the welds will be applied. This 

helps prevent damage to the tracks when soldering the connectors. 

• Before soldering, tin the tip of the soldering iron by melting some solder on it. 

This makes it possible to have a liquid contact between the soldering iron and 

the printed circuit, and therefore better heat conduction. Then, when the circuit 

pad is hot, the solder strand can be approached. 

• Keep the soldering iron temperature as low as possible to avoid damaging the 

circuit board (around 250 °C). 



 

79 

Chapter 3 
Setting up the development 
environment on a stand-alone 
computer 

The previous chapter showed how the sensors were connected by tubes so that the same 

air passes over all the sensors. It also showed how all the electronic components were connected 

to a voltage source. To allow an actual communication between the central computer (i.e., 

Raspberry Pi) and all the connected sensors, a software need to run on the central computer. 

The software was written on a stand-alone computer, and then regularly transferred to the 

Raspberry Pi for execution and tests. Software and libraries are executed in a virtual environment 

so that their operations are detached from the system. The software aims to connect all the 

sensors in a single frame, get the measurements simultaneously, store all the data in a single 

database, and provide real-time information to the operator on a screen. 

The central computer used is designed to work with Linux and the Python language. 

Python is a language known for its simplicity, rich in features, reliability and efficiency. Before 

starting to write our Python code, a series of steps are necessary to set up a software development 

environment on a stand-alone computer in which we will be working during the coding process. 

The configuration of a comfortable environment is essential for realising such a complex project 

with no initial knowledge of Python programming. The first part of this chapter explains how to 

set up the integrated development environment on its personal computer. The editing software, 

the automatic backup system, and the addition of libraries to the editing software are explained. 

The second part of this chapter deals with the Seacanairy central computer. It is concerned with 

the remote connection to the central computer, the file transfer, how to update the central 



 
Setting up the development environment on a stand-alone computer 

80 

computer, the Python virtual environment, as well as the procedure for testing our software as it 

is being written. 

1 Set up the development environment on a personal 
computer 

1.1 Development software – PyCharm 

The first step is to find the software to code with. PyCharm has been selected among the 

wide variety of IDE (integrated development environment), because it is one of the most 

accessible IDE to start coding with Python. Similar to Words capability to highlight mistakes 

during typing, PyCharm incorporates Python and other components for continuous code 

monitoring. Hence, PyCharm can point out errors, suggest simplifications, increase readability, 

or invite to add comments. Along the way of writing the code, PyCharm suggests new tips and 

tricks to the user to improve his code. Thus, the user can improve his skills in Python while 

working on his project. Figure 47 shows a screenshot of the main PyCharm display. The yellow 

lamp on the left indicates a little trick that the software suggests to the user. As an example, the 

improvement shown is the addition of a line break at line 267 to avoid text exceeding the screen 

size. PyCharm IDE has a free and premium version. The free one is sufficient for the Seacanairy 

purpose. 

 
Figure 47 PyCharm screenshot 

Source: own work 



 
HZS 

81 

1.2 New project creation 

Once PyCharm has been installed, create a new project. Indicate the location where your 

code (what you are typing) will be stored. In the Virtualenv section, indicate the location where 

the virtual environment will be stored. Do not store the virtual environment in the same folder 

as the code. This creates a lot of files and confusion between code and the system files. The use 

of a virtual environment allows the user to work on different projects using different Python 

versions, different library versions and Python interpreters. Figure 48 shows a PyCharm IDE 

screenshot. After the project is created, the IDE starts a Python script example named main.py. 

 
Figure 48 Create a new project in PyCharm 

Source: own work 

1.3 Git repository and GitHub account 

It is common sense to keep a backup of the software. Best practice dictates that during 

the whole Seacanairy development process, it is necessary to create a repository on GitHub and 

to push any new version of our code on the cloud. GitHub is a free cloud platform for software 

backup, file sharing, and collaboration. PyCharm is fully compatible with GitHub after the 

installation of Git. 

Start by creating an account on github.com. Then, install the Git package via 

git-scm.com/downloads. Once Git is installed, restart PyCharm and open the PyCharm settings 

(File/Settings). In Version Control, in Git, check that PyCharm has well detected the path 

to the Git executable. If the path has not been detected, fill it in yourself. The path should look 

like this: C:\Program Files\Git\cmd\git.exe. Figure 49 shows the procedure and menu to 

C:...\Documents\folder_where_your_code_will_be_stored 

C:...\Documents\folder_where_your_virtualenv_will_be_stored 

https://ivobruggeoffice-my.sharepoint.com/personal/cyril_dewez_365_academicoffice_be/Documents/Thèse%20de%20Master%20%5bCloud%5d/6%20REDACTION/github.com
https://ivobruggeoffice-my.sharepoint.com/personal/cyril_dewez_365_academicoffice_be/Documents/Thèse%20de%20Master%20%5bCloud%5d/6%20REDACTION/git-scm.com/downloads


 
Setting up the development environment on a stand-alone computer 

82 

open to reach the settings. Once the plugin has been successfully linked, connect Git to your 

GitHub account. On the same window, open GitHub, press + on the top and Log In via 

GitHub. Refer to Figure 50 for more details. 

 
Figure 49 Git incorporation to PyCharm 

Source: own work 

 

Figure 50 Log in GitHub using PyCharm 

Source: own work 

Once PyCharm is configured to communicate with the GitHub servers, we can create a 

repository. This is the name given to the folder which will be synchronized with the cloud. In 

PyCharm, open the VCS tab and create a Git repository. Now, share this repository on 



 
HZS 

83 

your GitHub page. In VCS, click on share project on GitHub. Give your new repository a name 

and a short description. Once this step is done, you see a new project on your GitHub page as 

in Figure 53. 

 
Figure 51 Create Git repository through PyCharm 

Source: own work 

1.4 Commit and Push files to GitHub 

Every time the user makes a series of changes, they should be posted immediately to the 

server by pressing commit. Select the file you want to update and write a comment. The comment 

should shortly describe what changed in the new version. Once you commit to all the desired 

files, push them to the cloud. Refer to Figure 52 for more details concerning the procedure. 

Stored and updated files are also visible on the GitHub web page, as shown in Figure 53. 



 
Setting up the development environment on a stand-alone computer 

84 

 
Figure 52 Commit and Push changes to GitHub 

Source: own work 

 
Figure 53 GitHub repository example 

Source: own work 

1.5 Libraries installation 

While coding in Python, for the Raspberry Pi, libraries are used. These libraries are sets 

of predefined useful functions. The required libraries have to be installed in PyCharm. In this 

way, the IDE will be able to check the code and help us. To install a new library in PyCharm, 

open File, then open Settings, click on the Project tab and click on Python Interpreter. 

Then, use the button + and − on top of the page to add and remove libraries. The procedure is 

shown in Figure 54. Hereafter is a list of the required libraries: 

• Mysql-connector 

Commit and Push 



 
HZS 

85 

• Progress 

• Pyserial 

• PyYAML 

• Raspberry Pi.GPIO 

• Smbus2 

• spidev 

 
Figure 54 Install libraries on PyCharm 

Source: own work 

1.6 Connect to the Raspberry Pi using TeamViewer 

TeamViewer is an easy software solution allowing remote control of any computer from 

any device. It is used for debugging in informatics, the internet of things, and remote access. In 

contrast to SSH (Secure Shell), TeamViewer works from any connection (either local or 

worldwide), which requires a local connection (computer connected to the same router as the 

Raspberry). Download TeamViewer on your computer from the official website 

(teamviewer.com). On the Raspberry Pi, open TeamViewer using the shortcut on the Seacanairy 

central unit desktop, using either the touchscreen or a USB mouse plugged in the Raspberry Pi 

USB). Meanwhile, on your PC, insert the partner ID and type the password when required. 

Current Seacanairy central computer partner ID and password are written in Table 16. 

http://www.teamviewer.com/


 
Setting up the development environment on a stand-alone computer 

86 

Table 16 Raspberry Pi TeamViewer ID and Password 

Source: own work 

Partner ID Password 
1612778925 se@c@n@iry 

 

1.7 Transfer files from or to the Raspberry Pi 

To transfer files from your computer to the Seacanairy central unit and in the opposite 

direction, connect to the Raspberry Pi as explained in section 1.6. On the top of the computer 

screen, click the TeamViewer banner and open File Transfer. A window will open, showing 

side by side the PC storage and the Raspberry Pi storage. Next, select a file on the right or left 

and click on the corresponding transfer button, either send or receive. Multiple files can be 

transferred at once, holding down ctrl or shift. 

 
Figure 55 File transfer from/to the Raspberry Pi 

Source: own work, screenshot of the central computer scree, taken through TeamViewer 

2 Set up the development environment on the Seacanairy 
central computer 

2.1 Update the Raspberry Pi 

As modern electronic devices connected to the internet, they are suffering from 

vulnerabilities and bugs. Raspberry Pi OS, software's and other libraries are in constant 

evolution. The procedure to update the Raspberry Pi is described [36]. A summary: 



 
HZS 

87 

• Update the system's package list: sudo apt update 

• Upgrade the package list to the latest version: apt list --upgradable 

• Run all the upgrades in the list. During this last step, do not disconnect the 

Raspberry Pi power supply. Do not worry about screen behaviour which can 

become black for a while. The display will return when the update is finished. 

sudo apt full-upgrade, confirm via Y 

2.2 The virtual environment on the Raspberry Pi 

The virtual environment stores all the libraries used in one project in one separate folder. 

That way, the user can work on different projects with the same device using different libraries 

and versions, for example. 

2.2.1 Create a Virtual Environment 

This point aims to explain how to create a new virtual environment on the 

Raspberry Pi [16]. 

• Create a folder in the storage where Python codes, virtual environment, and data 

files will be stored altogether. 

• Open a new terminal on the Raspberry Pi and open the folder created before 

using cd followed by the folder name. Execute cd seacanairy_project 

• Execute the following function to create the virtual environment. Let the process 

work until it is finished. Execute python3 -m venv ./venv 

2.2.2 Virtual environment activation 

Before any Python-related action in the command shell, activate the virtual environment. 

The following steps are illustrated in Figure 56 [16]. Refer to point 3 on page 92 for console 

tricks. 

• Open the folder in which your virtual environment is saved using the cd 

command. Execute cd seacanairy_project 

• Activate the virtual environment. Execute source venv/bin/activate 



 
Setting up the development environment on a stand-alone computer 

88 

• The virtual environment is now active. Subsequent commands entered as pip or 

python will be executed in the virtual environment. To leave the virtual 

environment, type deactivate and press enter. Note the presence of on the left 

of the green text. 

 
Figure 56 Activate the virtual environment on the Raspberry Pi 

Source: Own work, a screenshot of the central computer screen, taken through TeamViewer 

2.2.3 Activate the virtual environment in Thonny Python IDE 

Thonny Python IDE is the built-in IDE for Python on the Raspberry Pi. It is not as 

powerful as PyCharm (see page 80), but it is an easy way to make small modifications to a code 

during development. By default, Thonny Python IDE uses the built-in Python 3 version. To run 

our code based on our virtual environment, some changes must be made in the settings. To do 

this, open Thonny Python IDE using a USB mouse or use the touchscreen as shown in Figure 

57. Then, follow the procedure, also explained schematically in Figure 58. 

• In tools, open options. 

• Open the interpreter tab. Select Alternative Python 3 interpreter or 

virtual environment. 

• Below, indicates the location of the python file in the virtual environment created 

at point 2.2.1. The path should look like …/venv/bin/python. Click on the ‘…’ 

on the right to navigate through the folders. 

• Click on OK and restart Thonny Python IDE. After the restart, you should see the 

new interpreter path on the right bottom of the window. 



 
HZS 

89 

   
Figure 57 Opening Thonny Python IDE 

Source: own work, a screenshot of the central computer screen, taken through TeamViewer 

 
Figure 58 Virtual environment in Thonny Python IDE 

Source: own work, a screenshot of the central computer screen, taken through TeamViewer 

2.3 Install Python libraries on the Raspberry Pi 

All libraries used in this project have been installed using pip3 in the virtual 

environment. 1.5 on page 84. 

Table 17 is a list of pip3 functions necessary to install Python libraries. Before proceeding 

to any pip3 execution, be sure to have activated the virtual environment as explained in point 

2.2.2 on page 87. Necessary libraries for the Seacanairy are listed in 1.5 on page 84. 



 
Setting up the development environment on a stand-alone computer 

90 

Table 17 pip3 function list 

Source: own work, online documentation [16] 

Purpose Function 
Show help pip3 --help 

Install a library (e.g., smbus2) pip3 install smbus2 

List all installed libraries pip3 list 

Remove a library (e.g., smbus2) pip3 uninstall smbus2 

2.4 Testing code on the Raspberry Pi 

As explained in 1 on page 80, it is best to write the code on your personal computer using 

PyCharm rather than working on the built-in Thonny Python IDE on the tiny Raspberry Pi's 

screen. However, sensors and devices are connected to the Raspberry Pi and not to our computer. 

Therefore, regular code transfer from the PC to the Raspberry Pi for testing is necessary. 

Different methods are available: copy/pasting the code as text using TeamViewer, file transfer 

using TeamViewer or python execution in the console. 

2.4.1 Copy-pasting in Thonny Python IDE 

Connect to the Raspberry Pi via TeamViewer as explained in point 1.6 on page 85, and 

open Thonny Python IDE as explained in point 2.2.3 on page 88. Next, select the whole code 

on your computer using ctrl+A and copy it to the clipboard ctrl+c. Next, go into TeamViewer, 

open Thonny Python IDE and paste the code in the corresponding file ctrl+v. To execute the 

code, press the green arrow on top of the window. Repeat this manipulation each time you need 

to test your code.  



 
HZS 

91 

 
Figure 59 Copy-pasting code from PC to Thonny Python IDE 

Source: own work, screenshot of the central computer scree, taken through TeamViewer 

2.4.2 TeamViewer File Transfer and python3 in console 

Open TeamViewer (as explained in point 1.6 on page 85) and open file transfer (as 

explained at point 1.7 on page 86). On the left side, browse the through the maps where your 

code is located on your PC (refer to the PyCharm project creation in point 1.2 on page 81). On 

the right side, browse the place where you want to store the file on the Raspberry Pi (likely in the 

folder created before at point 2.2.1 on page 87). Finally, press on send. Once the file is stored 

on the Raspberry Pi, execute it using Python 3 in the console. Activate the virtual environment 

(see 2.2.2 on page 87). Then, write the following line, adapting seacanairy.py with the name 

of the code file you wish to execute (see Figure 60). Refer to point 3 (Console tip and tricks) for 

quicker console use. 

python3 seacanairy.py 



 
Setting up the development environment on a stand-alone computer 

92 

 
Figure 60 Testing code using file transfer and console 

Source: own work, screenshot of the central computer scree, taken through TeamViewer 

3 Console tip and tricks 

The following table indicates some tip and tricks while working with the console. They 

make life easier and can save much time. 

Table 18 Tip and tricks console 

Source: own work 

Action Description 
Keyboard ↑ 

and ↓ 
Move through the execution history (even if the system has been 
stopped/closed) 

ctrl+c Kill an instance (force to stop) 
ctrl+x Exit a nano screen 

&& Concatenate different lines and actions in one line 
Example (in one line): cd seacanary_project && source 
venv/bin/activate && python3 seacanairy.py 

| 

4 Raspberry Pi password 

Table 19 Raspberry Pi username and password 

Source: own work 

Username pi 
Password raspberry 



 

93 

Chapter 4 
Software of the Seacanairy 

The previous chapter described the environment in which the software was developed. 

In order to manage from the Seacanairy central computer the sensors, the data, operate the 

pump, start measurements at regular intervals, and store all the data in a single database, the 

software has been written in Python. This chapter deals with the overall structure of Python code 

files, how the different parts of the software work together and the other processes that take place 

during the operation of the Seacanairy. An in-depth study of the software for each sensor as well 

as their electrical connections is to be found in Chapter 1. 

1 Overall Seacanairy software structure 

The first problem we had to face during the realization of the Seacanairy is the good 

operation of the communications with the sensors. There is no standard allowing the easy plug 

and play connection of a sensor to a central unit and its immediate correct functioning. 

Therefore, each sensor required an in-depth study of the manufacturer's documentation, the 

communication protocol used, as well as hours of trial and error for the software to function 

correctly. The algorithms of each sensor have different functions, including get_data(), which 

automatically performs all the necessary operations to take a measurement and return the data. 

When each sensor is working individually, we wrote the final code for the Seacanairy, which 

starts the pump, execute the get_data() functions of each sensor, and stores the data in a single 

database. Figure 62 is a drawing of the global software structure. Each round indicates a different 

Python code file. Note that ‘.py’ is the extension for Python files. Figure 62 is an illustration of 

importing the algorithms of the sensors and performing the functions to obtain the data. 



 
Software of the Seacanairy 

94 

 

Figure 61 Seacanairy software structure 

Source: own work, using draw.io 



 
HZS 

95 

# Import Python files 

import CO2 

import OPCN3 

import AFE 

import GPS 

import flow 

 

# Use the functions from the Python files imported 

CO2.get_data() 

OPCN3.get_data(3, 5)  # flushing_time=3, sampling_time=5 

AFE.get_data() 

GPS.get_position() 

flow.get_data() 
Figure 62 Importation in Python example 

Source: own work, using PyCharm IDE 

This working method is advantageous on the following points. The first advantage is the 

size of the file. Instead of having just one big file with thousands of rows, variables, and functions, 

we separate and structure our files for each sensor. Secondly, it makes it easier for anyone to copy 

our code and use it in another project. This is because all the components for a sensor are kept 

in a separate file. Finally, when we work on the software, we do not confuse functions and 

variables between the different sensors, many of them having the same names. 

All of the code files we wrote follow the same structure. Indeed, several lines of code, 

such as obtaining settings and saving error messages, are common to all files. Figure 63 is a 

flowchart showing the general python script layout. 



 
Software of the Seacanairy 

96 

 
Figure 63 General Python script layout 

Source: own work, using draw.io 

2 Information display and logging functions 

Logging is a crucial step when making computer code. This involves sorting and storing 

all the messages generated by our software in different levels, at least to the most important 

(debugging, information, warning, error and critical). In addition to being displayed on the 

screen, messages are stored in a separate text file. We then have access to a kind of logbook that 

keeps track of everything that has happened, for better or for worse. In addition, the Seacanairy 

is designed to operate autonomously for long periods of time. This allows us to check for any 

problems that may have arisen during this period of absence. 



 
HZS 

97 

Depending on how the software is run, the messages displayed on the screen will be 

different. For example, running the entire Seacanairy software will only show the most important 

messages. On the other hand, running the software of a particular sensor will show all available 

messages. Concretely, this makes it possible to have access to all the messages when working on 

the improvement of a particular sensor but to keep only the most important messages when the 

Seacanairy is fully operational. That way, direct execution of a sensor script (i.e., running CO2.py 

directly) will display the messages. As the configuration of this module is a bit complex, it is 

accompanied by a flowchart in Figure 64 explaining the procedure. Note that a console handler 

is required to show the messages on the screen and store them into the log file. If the Seacanairy 

script activates a handler and the script of a sensor also does, then the messages will be displayed 

twice on the screen. This is the reason why the handler is only activated when executing the 

script of a sensor directly (left part in Figure 64). 



 
Software of the Seacanairy 

98 

 
Figure 64 Logging flowchart 

Source: on work, using draw.io 

3 Settings page 

3.1 Choice of file format 

All the Python scripts depend on a unique settings file that allows the user to change a 

few sensors, logging, and sampling session settings without changing the source code. Two file 

types are available for that purpose: JSON and YAML. JSON (JavaScript Object Notation) is a 

derivative format of JavaScript. Working with indentation, brackets, colon, and quotations 

marks, almost every data type is available. Either readable by a machine or by a human, JSON 



 
HZS 

99 

depend a lot on the syntax and do not allow any comments. YAML (Yet Another Markup 

Language) aims to be as easy as Python and rely only on indentation, indents, and colons. It also 

allows writing comments in the file after a number sign (#) to give more information about a 

setting. That makes YAML files clearer for people who know little about coding. Figure 65 is a 

comparison between JSON and YAML files for the same content. 

 
Figure 65 Visual comparison between JSON and YAML 

Source: adapted from Wikipedia [17] 

3.2 Available settings 

The seacanairy_settings.yaml file is a text file containing the various settings of the 

Seacanairy. A copy of this file can be found in the files joined to this paper (see Annexe 1 on 

page 113). To avoid any crash in the software, do not alter the structure of the file. Hereafter is 

a list of all the available settings. 

General: 

• Activate database/sensor: activate or deactivate a functionality. 

JSON example 

YAML example 



 
Software of the Seacanairy 

100 

Seacanairy: 

• Sampling session name: name of the measurement session. This name will be 

assigned to the file containing the data, the logging file, and the database table. 

• Sampling period: period of time between each measurement. 

• Air pump minimum running time: minimum amount of time the air pump runs 

per loop. This ensures sufficient flushing of the air inside the piping. Gas sensor 

measurements starts after this amount of time.  

• Store debug messages: store all messages in the logging file, or store only error 

messages. 

MySQL database: 

• Host: the URL leading to the server. Can also be an intranet IP address. 

• Database name: name of the database 

• User and password: different users can have access to a database with different 

authorizations. 

CO2 sensor: 

• Automatic sampling frequency: number of measurements that the CO2 sensor 

must perform per sampling period (setting defined previously) (see point 1.5 on 

page 14). 

• Number of reading attempts: number of times the software tries to get the 

measurements if the checksum is wrong. 

OPC-N3 sensor: 

• Flushing time: period of time between the start of the laser and the fan, and the 

start of the measuring. 

• Sampling time: amount of time laser and fan are running and taking sample. 



 
HZS 

101 

• Fan speed: value between 0 and 100. 

• Take a new measurement if the checksum is wrong: avoids too short 

measurement periods (see point 2.4.2 in Chapter 1 on page 29). 

AFE Board: 

• Noise reduction – number of reading averaged: number of successive 

measurements of gas concentrations to calculate the average in order to reduce 

the noise of the measurements (see point 3.3 on page 45). 

4 MySQL Database 

In parallel to an Excel file stored in the Raspberry Pi, the measurements are automatically 

stored in a MySQL database, hosted in the cloud or locally. Connection information must be 

specified in the Seacanairy settings file (see point 3.2 on page 99, as well as Annexe 11 on page 

190). The same information can be used to link an Excel file on a standalone computer to 

retrieve the data from MySQL for remote data monitoring. 

The flowchart in Figure 66 illustrates the connection process, followed by Figure 65, 

which shows how the systems update the database with new data, either coming from a new 

measurement or from older data not yet uploaded (i.e. due to an internet connection lost). Figure 

68 shows how the data are shown in MySQL Workbench. They can also be downloaded directly 

to Microsoft Excel using a MySQL connector. That way, real-time graphs can be displayed. 

Graphs of the Seacanairy can be found in Annexe 14 on page 195. 

The server used is a free service provided by remotemysql.com. Any other MySQL 

database host is possible as long as the server is remotely available, which is not the case with all 

free offers. It is also possible to host the MySQL server on a personal machine connected to the 

same router as the Seacanairy. In that case, the ‘host’ in the settings is the IP address of that 

machine. 



 
Software of the Seacanairy 

102 

 
Figure 66 MySQL connection process flowchart 

Source: own work, using draw.io 



 
HZS 

103 

 

 
Figure 67 Database software flowchart 

Source: own work, using draw.io 



 
Software of the Seacanairy 

104 

 
Figure 68 Display of the data stored in the MySQL database 

Source: own work, using MySQL Workbench 

5 Global Seacanairy script  

The Seacanairy script performs a series of tasks during its execution. Figure 69 is a 

flowchart of the different processes taking place. Since the software runs in a loop and takes 

measurements at regular intervals, there is no end to the diagram. 

 



 
HZS 

105 

 
Figure 69 Flowchart showing Seacanairy software functioning 

Source: own work, using draw.io 



 
Software of the Seacanairy 

106 

5.1 Manual operation through the touchscreen 

On the Seacanairy screen (see Figure 70), several buttons allow the user to perform 

various operations, such as checking the system time, changing the Seacanairy parameters, or 

manually starting the Seacanairy. 

 
Figure 70 Welcome screen of the Seacanairy (shown on the touchscreen) 

Source: own work, using TeamViewer 

5.2 Autostart at boot 

A service, named seacanairy.service, has been created so that the system starts 

automatically after plugging in the power cable. When the user presses "Start Sampling", the 

background service stops to prevent the system from running twice at the same time. The 

following functions can be performed in order to change the behavior of the service. 

Table 20 Functions to manage the Seacanairy service for autostart after boot 

Source: own work 

Function Operation 
sudo systemctl enable 

seacanairy.service 

Enable the service. Seacanairy will automatically start at 
next boot. 

sudo systemctl disable 

seacanairy.service 

Disable the service. Seacanairy will automatically start at 
next boot. 

sudo systemctl start 

seacanairy.service 

Start the service. In opposition to the shortcut on the 
touchscreen, Seacanairy will run in the background. 

sudo systemctl stop 

seacanairy.service 

Start the service. This is automatically performed while 
manually pressing « Start Sampling » on the screen. 

sudo systemctl restart 

seacanairy_service 

Restart the service. This should be executed to take into 
account settings changes. 



 
HZS 

107 

sudo systemctl status 

seacanairy_service 

Get the status of the service. Shows last lines from the 
console. Indicate any restart due to any crash. Indicates the 

time the Seacanairy system has been running (see Figure 
71). 

 

 

Figure 71 Seacanairy service status 

Source : own work, using TeamViewer 

6 Software files and folders  

6.1 List of files 

Figure 72 lists all the files that relate to the Seacanairy software. They are all stored in a 

dedicated folder named seacanairy_project. 

The Seacanairy software has been written step by step, sensor by sensor. For each device, 

a separate Python sheet has been written that aims to manage communication, data 

interpretation and conversion properly. Each Python script is composed of functions that process 

variables, interpret data, communicate with the sensor, check the bytes... Finally, after hours of 

documentation readings, trial-and-errors, and online searches, the system succeeds in executing 

a get_data() function that aims to make all the necessary steps in good order to get the data 

from the sensor to the screen. 

Each Python script generates a lot of messages printed on the screen. To store them for 

further analysis, a logging system sort all the messages according to their importance in a 



 
Software of the Seacanairy 

108 

dedicated log file. Message storing is an essential step in developing as we cannot wait for hours 

in front of the screen for error. 

All the sensors are gathered via seacanairy.py. This script starts the pump, call the 

get_data() functions of each sensor's Python script, and store all the data in a common comma-

separated values file at regular interval. A settings file called seacanairy_settings.yaml 

contains some sensor, sampling, and logging settings as well as sampling session names. In 

function of that last setting, seacanairy.py will create a new folder with the sampling session 

name to store the data and the sensors' log. 



 
HZS 

109 

 
Figure 72 Files used by the Raspberry Pi for the proper execution of the software 

Source: own work 

seacanairy_project 

seacanairy.py 

sampling_session_name 

CO2.py 

OPCN3.py 

AFE.py 

GPS.py 

flow.py 

seacanairy_settings.yaml 

sampling_session_name_data.log 

sampling_session_name_data.csv 

CO2-debugging.log 

OPCN3-debugging.log 

AFE-debugging.log 

GPS-debugging.log 

flow-debugging.log 

set_system_time.sh 

desktop_icon 

/home/pi/seacanairy_project 

AFE_calibration 

CO_calib.yaml 

NO2_calib.yaml 

OX_calib.yaml 

SO2_calib.yaml 

temperature_calib.yaml 

database.py 





 

111 

Conclusion 
This work proposed a design for a transportable, watertight, autonomous measuring 

instrument dedicated to measuring air quality onboard merchant ships that can be easily 

calibrated coupling calibration bottles to the tubing system. The proposed instrument measures 

sulfur oxides, nitrogen oxides, carbon oxides, ozone, particulate matter, temperature and 

humidity. Equipped with a GPS receiver, it also registers the vessel's position and behaviour, 

such as course or speed changes. Linked to an online database, it allows remote monitoring of 

the measurement taken through an internet connection. 

The use of several different sensors ensures a wide measuring range of pollutants. First, 

a central computer connects the sensor to a Raspberry Pi via a printed circuit board. Then, 

Python software runs to performs all measurements at regular intervals and stores the data in a 

file. Next, a pump and a piping system bring the sampled air to the sensors. Using tubes makes 

it possible to connect calibration bottles to improve the sensor's accuracy. Also, an extension 

tube can be connected to measure the air from another place. Finally, all of the components are 

installed in a waterproof case so that all the necessary components become one single unit. 

During the development of the Seacamairy, an extensive list of smaller and more 

significant problems have been encountered. Each of these problems had to be solved to have a 

properly working instrument. After troubleshooting, the measuring campaign performed with 

the device shows that the instrument is working. 





 

113 

  
List of files 

This document has been rendered with a compressed folder containing a series of files. 

The list below mentions the files present. 

• AFE_calibration 
o CO_calib.yaml 
o NO2_calib.yaml 
o OX_calib.yaml 
o SO2_calib.yaml 
o Temperature_calib.yaml 

• AFE.py 
• CO2.py 
• database.py 
• flow.py 
• GPS.py 
• OPCN3.py 
• seacanairy.py 
• seacanairy_settings.py 
• set_system_time.sh 

 





 

115 

  
Case panels dimensions 

 
Figure 73 Lid and Base panel plan 

Source: own measurements in the Pelican Case iM2720 

552 mm 

422 m
m

 

R = 10 mm 



 
Case panels dimensions 

116 

 

Figure 74 Bottom panel plan 

Source : own measurements in the Pelican Case iM2720 

552 mm 

422 m
m

 

R = 10 mm 

40 mm 

65
 m

m
 

40 mm 

65
 m

m
 

130 m
m

 
130 m

m
 

130 m
m

 

20 mm 



 

117 

  
Schematic of the Seacanairy 
wiring 

The following schematic is available in full scale format on next page. 

 
Figure 75 Seacanairy electronic and electric schematic 

Source: own work using KiCad



 

118 

 

 

 



 

119 

  
Seacanairy PCB 

 

 
Figure 76 Seacanairy PCB version 2.0 (current version) 

Source: own work, using KiCad 



 
Seacanairy PCB 

120 

 
Figure 77 Seacanairy PCB version 3.0 (RTC DS3231 corrected) 

Source: own work, using KiCad 



 

121 

  
CO2.py 
#! /home/pi/seacanairy_project/venv/bin/python3 

""" 

Library for the use of E+E Elektronik EE894 CO2 sensor via I²C 

communication 

""" 

# -------------------------------------------------------- 

# USEFUL VARIABLES 

# -------------------------------------------------------- 

 

# get the time 

import time 

from datetime import date, datetime 

 

# Get the errors 

import sys 

 

# Create folders and files 

import os 

 

# smbus2 is the new smbus, allow more than 32 bits writing/reading 

from smbus2 import SMBus, i2c_msg 

# 'SMBus' is the general driver for i2c communication 

# 'i2c_msg' allow to make i2c write followed by i2c read WITHOUT any STOP 

byte (see sensor documentation) 

 

# logging 

import logging 

 

# yaml settings 

import yaml 

 

# progress bar during sampling 

from progress.bar import IncrementalBar 

 

# I²C address of the CO2 device 

CO2_address = 0x33  # i2c address by default, can be changed (see sensor 

doc) 

 

# emplacement variable 

bus = SMBus(1)  # make it easier to read/write to the sensor (bus.read or 

bus.write...) 

 

# -------------------------------------------------------- 

# YAML SETTINGS 

# -------------------------------------------------------- 

# Get current directory 

current_working_directory = str(os.getcwd()) 

 



 
CO2.py 

122 

with open(current_working_directory + '/seacanairy_settings.yaml') as file: 

    settings = yaml.safe_load(file) 

    file.close()  # close the file after use 

 

store_debug_messages = settings['CO2 sensor']['Store debug messages 

(important increase of logs)'] 

 

project_name = settings['Seacanairy settings']['Sampling session name'] 

 

measurement_delay = settings['CO2 sensor']['Amount of time required for the 

sensor to take the measurement'] 

 

max_attempts = settings['CO2 sensor']['Number of reading attempts'] 

 

# -------------------------------------------------------- 

# LOGGING SETTINGS 

# -------------------------------------------------------- 

# all the settings and other code for the logging 

# logging = tak a trace of some messages in a file to be reviewed afterward 

(check for errors fe) 

 

 

def set_logger(message_level, log_file): 

    # set up logging to file 

    logging.basicConfig(level=message_level, 

                        format='%(asctime)s %(name)-12s %(levelname)-8s 

%(message)s', 

                        datefmt='%d-%m %H:%M', 

                        filename=log_file, 

                        filemode='a') 

 

    logger = logging.getLogger('CO2 sensor')  # name of the logger 

    # all further logging must be called by logger.'level' and not 

logging.'level' 

    # if not, the logging will be displayed as 'ROOT' and NOT 'OPC-N3' 

    return logger 

 

 

if __name__ == '__main__':  # if you run this code directly ($ python3 

CO2.py) 

    message_level = logging.DEBUG  # show ALL the logging messages 

    # Create a file to store the log if it doesn't exist 

    log_file = current_working_directory + "/log/CO2-debugging.log" 

    if not os.path.isfile(log_file): 

        os.mknod(log_file) 

    print("CO2 Sensor DEBUG messages will be shown and stored in '" + 

str(log_file) + "'") 

    logger = set_logger(message_level, log_file) 

    # The following HANDLER must be activated ONLY if you run this code 

alone 

    # Without the 'if __name__ == '__main__' condition, all the logging 

messages are displayed 3 TIMES 

    # (once for the handler in CO2.py, once for the handler in OPCN3.py, 

and once for the handler in seacanairy.py) 

 

    # define a Handler which writes INFO messages or higher to the 

sys.stderr/display (= the console) 

    console = logging.StreamHandler() 

    console.setLevel(message_level) 

    # set a format which is simpler for console use 

    formatter = logging.Formatter('%(name)-12s: %(levelname)-8s 

%(message)s') 



 
HZS 

123 

    # tell the handler to use this format 

    console.setFormatter(formatter) 

    # add the handler to the root logger 

    logging.getLogger().addHandler(console) 

 

else:  # if this file is considered as a library (if you execute 

seacanairy.py for example) 

    # if the user asked to store all the messages in 

'seacanairy_settings.yaml' 

    if store_debug_messages: 

        message_level = logging.DEBUG 

    # if the user don't want to store everything 

    else: 

        message_level = logging.INFO 

    # Create a file to store the log if it doesn't exist yet 

    log_file = current_working_directory + "/" + project_name + "/" + 

project_name + "-log.log" 

    logger = set_logger(message_level, log_file) 

    # no need to add a handler, because there is already one in 

seacanairy.py 

 

 

# all further logging must be called by logger.'level' and not 

logging.'level' 

# if not, the logging will be displayed as ROOT and NOT 'CO2 sensor' 

 

# -------------------------------------------------------- 

 

 

def loading_bar(name, delay): 

    """ 

    Show a loading bar on the screen during a a certain amount of time 

    Make the user understand the software is doing/waiting for something 

    :param name: Text to be shown on the left of the loading bar (waiting, 

sampling…) 

    :param length: Amount of time the system is waiting (seconds) 

    :return: nothing 

    """ 

    bar = IncrementalBar(name, max=(2 * delay), suffix='%(elapsed)s/' + 

str(delay) + ' seconds') 

    for i in range(2 * delay): 

        time.sleep(0.5) 

        bar.next() 

    bar.finish() 

    return 

 

 

def digest(buf): 

    """ 

    Calculate the CRC8 checksum (based on the CO2 documentation example) 

    :param buf: List of bytes to digest [bytes to digest] 

    :return: checksum 

    """ 

    # Translation of the C++ code given in the documentation 

    crcVal = 0xff 

    _from = 0  # the first item in a list is named 0 

    _to = len(buf)  # if there are two items in the list, then len() return 

1 --> range(0, 1) = 2 loops 

 

    for i in range(_from, _to): 

        curVal = buf[i] 

 



 
CO2.py 

124 

        for j in range(0, 8):  # C++ stops when J is not < 8 --> same for 

python in range 

            if ((crcVal ^ curVal) & 0x80) != 0: 

                crcVal = (crcVal << 1) ^ 0x31 

 

            else: 

                crcVal = (crcVal << 1) 

 

            curVal = (curVal << 1)  # this line is in the "for j" loop, not 

in the "for i" loop 

 

    checksum = crcVal & 0xff  # keep only the 8 last bits 

 

    return checksum 

 

 

def check(checksum, data): 

    """ 

    Check that the data transmitted are correct using the data and the 

given checksum 

    :param checksum: Checksum given by the sensor (see sensor doc) 

    :param List of bytes transmitted by the sensor before the checksum (see 

sensor doc) 

    :return: True if the data are correct, False if not 

    """ 

    calculation = digest(data) 

    if calculation == checksum: 

        logger.debug("CRC8 is correct, data are valid") 

        return True 

    else: 

        logger.debug("CRC8 does not fit, data are wrong") 

        logger.error("Checksum is wrong, sensor checksum: " + str(checksum) 

+ 

                     ", seacanairy checksum: " + str(calculation) + 

                     ", bytes returned:" + str(data) + str(checksum)) 

        if data[0] and data[1] == 0: 

            logger.debug("Sensor returned 0 values, it is not ready, 

waiting a little bit") 

            print("Sensor not ready, waiting...", end='\r') 

            time.sleep(3) 

        return False 

 

 

def status(print_information=True): 

    """ 

    Read the status byte of the CO2 sensor 

    !! It will trigger a new measurement if the previous one is older than 

10 seconds 

    :param: print_information: Optional: False to hide the messages 

    :return: True if last measurement is OK, False if NOK 

    """ 

    logger.debug("Reading sensor status") 

    try: 

        with SMBus(1) as bus: 

            # reading = read_from_custom_memory(0x71, 1) 

            reading = bus.read_byte_data(CO2_address, 0x71) 

        # see documentation for the following decryption 

        CO2_status = reading & 0b00001000 

        temperature_status = reading & 0b00000010 

        humidity_status = reading & 0b00000001 

        if print_information:  # if user/software indicate to print the 

information 



 
HZS 

125 

            if CO2_status == 0: 

                logger.debug("CO2 status is OK") 

            else: 

                logger.warning("CO2 status is NOK") 

            if temperature_status == 0: 

                logger.debug("Temperature status is OK") 

            else: 

                logger.warning("Temperature is NOK") 

            if humidity_status == 0: 

                logger.debug("Humidity status is OK") 

            else: 

                logger.warning("Humidity status is NOK") 

        if CO2_status or humidity_status != 0: 

            # Only CO2_status and humidity_status, because for no known 

reason temperature status is always NOK 

            return False 

        else: 

            # Everything is OK 

            return True 

    except: 

        logger.critical("Status reading failure") 

        return True  # try to go ahead in all cases 

 

 

def getRHT(): 

    """ 

    Read the last Temperature and Relative Humidity measured, process the 

bytes, check checksum, convert in °C and %RH 

    :return:  Dictionary with the following items {"RH", "temperature"} 

    """ 

    logger.debug("Reading RH and Temperature from CO2 sensor") 

 

    write = i2c_msg.write(CO2_address, [0xE0, 0x00])  # see documentation, 

example for reading t° and RH 

    read = i2c_msg.read(CO2_address, 6) 

 

    attempts = 0  # trial counter for the checksum and the validity of the 

data received 

    reading_trials = 0  # trial counter for the i2c communication 

 

    # In case there is a problem and it return nothing, return "error" 

    data = { 

        "relative humidity": "error", 

        "temperature": "error" 

    } 

 

    # all the following code is in a loop so that if the checksum is wrong, 

it start a new measurement 

    while attempts <= max_attempts: 

 

        while reading_trials <= max_attempts:  # reading loop, will try 

again if the i2c communication fails 

            try:  # SMBUS stop working in case of error, avoid the software 

to crash in case of i2c error 

                with SMBus(1) as bus: 

                    bus.i2c_rdwr(write, read) 

                break  # break the loop if the try has not failed at the 

previous line, jump to the process of data 

 

            except:  # what happens if the i2c fails 

                if reading_trials == max_attempts: 

                    logger.critical("i2c failure " 



 
CO2.py 

126 

                                    + str(max_attempts) + "consecutive 

times, skipping this RH and temperature reading") 

                    return data  # indicate clearly that data are wrong 

 

                logger.error("i2c failure (" + str(sys.exc_info()) 

                             + "), trying again... (" + str(reading_trials 

+ 1) + "/" + str(max_attempts) + ")") 

                reading_trials += 1  # increment of reading_trials 

                time.sleep(3)  # if transmission fails, wait a bit to try 

again (sensor is maybe busy) 

 

        # process the data given by the sensor 

        reading = list(read) 

        # if the two checksums are correct... 

        if check(reading[2], [reading[0], reading[1]]) and 

check(reading[5], [reading[3], reading[4]]): 

            # reading << 8 = shift bytes 8 times to the left, say 

differently, add 8 times 0 on the right 

            temperature = round(((reading[0] << 8) + reading[1]) / 100 - 

273.15, 2) 

            relative_humidity = ((reading[3] << 8) + reading[4]) / 100 

 

            print("Temperature is:", temperature, "°C", end="") 

            print("\t| Relative humidity is:", relative_humidity, "%RH") 

 

            # Create a dictionary containing all the data 

            data = { 

                "relative humidity": relative_humidity, 

                "temperature": temperature 

            } 

 

            return data 

 

        else:  # if one or both checksums are not corrects 

            if attempts == max_attempts: 

                logger.error("Data were wrong " 

                             + str(max_attempts) + " consecutive times, 

skipping this RH and temperature reading") 

                return data  # indicate on the SD card that data are wrong 

 

            else: 

                attempts += 1 

                logger.warning("Error in the data received (wrong 

checksum), reading data again... (" 

                               + str(attempts) + "/" + str(max_attempts) + 

")") 

                time.sleep(4)  # avoid to close i2c communication 

 

 

def getCO2P(): 

    """ 

    Read the last CO2 instant, CO2 average and pressure measurements, 

process the bytes, check checksum, 

    convert in hPa and ppm 

    :return: Dictionary containing the following items {"average", 

"instant", "pressure"} 

    """ 

    logger.debug('Reading of CO2 and pressure') 

 

    write = i2c_msg.write(CO2_address, [0xE0, 0x27])  # see documentation, 

reading of CO2 and pressure example 

    read = i2c_msg.read(CO2_address, 9) 



 
HZS 

127 

 

    attempts = 0  # trial counter for the checksum and the validity of the 

data received 

    reading_trials = 0  # trial counter for the i2c communication 

 

    # Create a dictionary containing the data, return "error" in case of 

error 

    data = { 

        "average": "error", 

        "instant": "error", 

        "pressure": "error" 

    } 

 

    # all the following code is in a loop so that if the checksum is wrong, 

it start a new measurement 

    while attempts <= max_attempts: 

 

        while reading_trials <= max_attempts:  # reading loop, will try 

again if the i2c communication fails 

            try:  # SMBUS stop working in case of error, avoid the software 

to crash in case of i2c error 

                with SMBus(1) as bus: 

                    bus.i2c_rdwr(write, read) 

                break  # break the loop if the try has not failed at the 

previous line, jump to the process of data 

 

            except:  # what happens if the i2c fails 

                if reading_trials == max_attempts: 

                    logger.critical("i2c failure " 

                                    + str(max_attempts) + " consecutive 

times, skipping CO2 and pressure reading (" + 

                                    str(sys.exc_info()) + ")") 

                    return data  # indicate clearly that the data are wrong 

 

                logger.error("i2c failure, trying again... (" + 

str(sys.exc_info()) + ")") 

                reading_trials += 1  # increment of reading_trials 

                print("Waiting 3 seconds...", end='\r') 

                time.sleep(3)  # if I²C comm fails, wait a little bit and 

try again (sensor is maybe busy) 

 

        # process the data given by the sensor 

        reading = list(read) 

        # if the two checksums are correct... 

        if check(reading[2], [reading[0], reading[1]]) and 

check(reading[5], [reading[3], reading[4]]) and check( 

                reading[8], [reading[6], reading[7]]): 

            pressure = (((reading[6]) << 8) + reading[7]) / 10  # reading 

<< 8 = shift bytes 8 times to the left 

            print("Pressure is:", pressure, "mbar") 

 

            CO2_average = (reading[0] << 8) + reading[1]  # reading << 8 = 

shift bytes 8 times to the left 

            print("CO2 average is:", CO2_average, "ppm", end="") 

 

            CO2_raw = (reading[3] << 8) + reading[4] 

            print("\t| CO2 instant is:", CO2_raw, "ppm") 

 

            data = { 

                "average": CO2_average, 

                "instant": CO2_raw, 

                "pressure": pressure 



 
CO2.py 

128 

            } 

 

            return data 

 

        else:  # if one or both checksums are not corrects 

            if attempts == max_attempts: 

                logger.error("Error in the data received (wrong checksum), 

skipping this CO2 and pressure reading") 

                return data  # indicate clearly that the data are wrong 

 

            else: 

                attempts += 1 

                logger.warning("Error in the data received (wrong 

checksum), reading data again... (" + 

                               str(attempts) + "/" + str(max_attempts) + 

")") 

                time.sleep(3)  # avoid too close i2c communication 

 

 

def get_data(): 

    """ 

    Get all the available data from the CO2 sensor (CO2 instant/average, 

pressure, temperature, humidity 

    :return:    Dictionary containing the following items 

                {"pressure", "temperature", "CO2 average", "CO2 instant", 

"relative humidity"} 

    """ 

    # Read status byte 

    # attempts = 1 

    # while True: 

    #     if status(True): 

    #         break 

    #     else: 

    #         print("Waiting for data to be ready...", end='\r') 

    #         time.sleep(2) 

    #         attempts += 1 

    #     if attempts >= 6: 

    #         print("Sensor not ready, trying to read...", end='\r') 

    #         break 

 

    # Get CO2 and pressure 

    data1 = getCO2P() 

    # Get RH and temperature 

    data2 = getRHT() 

    # Append those two dictionary 

    data1.update(data2) 

    return data1 

 

 

# --------------------------------------------------------------------- 

# Settings 

# --------------------------------------------------------------------- 

 

def internal_timestamp(new_timestamp=None): 

    """ 

    Read the internal sampling period of the CO2 sensor 

    To change the value, write it between the brackets (in seconds) 

    :param new_timestamp: None or empty to read, new value in seconds to 

change it 

    :return: Actual internal sampling period of the sensor 

    """ 

    if new_timestamp is not None:  # if user write something as input in 



 
HZS 

129 

the brackets (arguments) 

        if not 15 <= new_timestamp <= 3600: 

            logger.warning("Sampling period should be a number between 15 

and 3600 seconds (see sensor documentation)") 

        to_write = new_timestamp * 10  # see sensor documentation 

        msb_timestamp = (to_write & 0xFF00) >> 8 

        lsb_timestamp = (to_write & 0xFF) 

        reading = write_to_custom_memory(0x00, msb_timestamp, 

lsb_timestamp) 

    else:  # if user doesn't write anything between the brackets 

        reading = read_from_custom_memory(0x00, 2) 

 

    if reading is not False:  # read_from_custom_memory() returns False in 

case of error... 

        # ...Python crash if it tries to make calculations with a boolean 

(True or False) 

        measuring_time_interval = (reading[1] + reading[0] * 256) / 10 

        if new_timestamp is None:  # adapt the message in function of the 

wishes of the user (here he want to read) 

            logger.info("Internal measuring time interval is " + 

str(int(measuring_time_interval)) + " seconds") 

        else:  # (here he want to write) 

            logger.info( 

                "Internal measuring time interval set successfully on " + 

str(int(measuring_time_interval)) + " seconds") 

        return measuring_time_interval 

    else: 

        logger.error("Failed to change the internal timestamp to " + 

str(new_timestamp) + " seconds") 

 

 

def trigger_measurement(force=False): 

    """ 

    Request a new CO2, t°, pressure and RH measurement IF the previous one 

is older than 10 seconds 

    Force to avoid the previous 10 seconds condition 

    Same function as 'status()' 

    :param: force:  True to apply the function two consecutive times to be 

sure that the sensor is well 

                    synchronized with the seacanairy 

                    False to apply it once (during the main loop of the 

Seacanairy for example) 

    :return: True or False if status if OK or NOK 

    """ 

    print("Triggering a new measurement...", end='\r') 

 

    # The sensor will not take a new sample if the previous one is older 

than 10 seconds 

    sensor_status = status(False)  # trigger new measurement 

 

    if force:  # if force is True 

        if measurement_delay != 0:  # if user/software want to wait for the 

data to be ready 

            loading_bar("Waiting for sensor sampling", measurement_delay)  

# usually 10 seconds (see doc) 

            # sensor documentation, let time to the sensor to perform the 

measurement 

 

            # That way, we ensure that the sensor will trigger a new 

measurement RIGHT now 

            sensor_status = status(False) 

            loading_bar("Waiting for sensor sampling", measurement_delay) 



 
CO2.py 

130 

            # sensor documentation, let time to the sensor to perform the 

measurement 

 

    return sensor_status  # same function as 'status()', but here we don't 

want to print the status on the screen 

 

 

def read_internal_calibration(item): 

    """ 

    Read the internal temp_calib of a particular sensor item 

    :param item: indicate which internal temp_calib to read: 'relative 

humidity', 'temperature', 'pressure', 'CO2', 'all' 

    :return: List containing the temp_calib settings [offset, gain, 

lower_limit, upper_limit] 

    """ 

    if item == 'relative humidity': 

        index = 0x01 

        unit = "%RH" 

        factor = 1 / 100 

    elif item == 'temperature': 

        index = 0x02 

        unit = "Kelvin" 

        factor = 1 / 100 

    elif item == 'pressure': 

        index = 0x03 

        unit = "mbar" 

        factor = 1 / 10 

    elif item == 'CO2': 

        index = 0x04 

        unit = "ppm" 

        factor = 1 

    elif item == "all": 

        for i in ['relative humidity', 'temperature', 'pressure', 'CO2']:  

# iterate this function for each parameter 

            read_internal_calibration(i) 

            time.sleep(0.5)  # avoid too close i2c communication 

        return  # exit the function once the iteration is finished 

    else: 

        raise TypeError("Argument of read_internal_calibration is wrong, 

must be: 'relative humidity', " 

                        "'temperature', 'pressure', 'CO2' or 'all'") 

 

    reading = read_from_custom_memory(index, 8) 

 

    if reading is False:  # if read_from_custom_memory() function doesn't 

work, will return False... 

        logger.error("Failed to read the internal temp_calib of the CO2 

sensor") 

        return False  # indicate error 

    print(reading) 

    offset = (reading[0] << 8 + reading[1]) * factor 

    gain = (reading[2] << 8 + reading[3]) / 32768 

    lower_limit = (reading[4] << 8 + reading[5])  # factor taken into 

account further 

    upper_limit = (reading[6] << 8 + reading[7])  # factor taken into 

account further 

 

    logger.info("Reading temp_calib for " + str(item) + ":") 

    logger.info("\tOffset: " + str(offset) + " " + str(unit)) 

    logger.info("\tGain: " + str(gain)) 

    if lower_limit == 0xFFFF: 

        logger.info("\tNo last lower limit adjustment") 



 
HZS 

131 

        lower_limit = 0 

    else: 

        lower_limit += factor 

        logger.info("\tLower limit: " + str(lower_limit) + " " + str(unit)) 

    if upper_limit == 0xFFFF: 

        logger.info("\tNo last upper minute adjustment") 

        upper_limit = 0 

    else: 

        upper_limit *= factor 

        logger.info("\tUpper limit: " + str(upper_limit) + " " + str(unit)) 

    return [offset, gain, lower_limit, upper_limit] 

 

 

def read_from_custom_memory(index, number_of_bytes): 

    """ 

    Read bytes from specified custom memory address in the CO2 sensor 

internal memory 

    :param index: index of the data to be read (see sensor doc) 

    :param number_of_bytes: number of bytes to read (see sensor doc) 

    :return: list[bytes] from right to left 

    """ 

    logger.debug("Reading " + str(number_of_bytes) + " bytes from customer 

memory at index " + str(hex(index)) + "...") 

    write = i2c_msg.write(CO2_address, [0x71, 0x54, index])  # usual bytes 

to send/write to initiate the reading 

    attempts = 1 

    read = []  # avoid return issue 

 

    while attempts < 4: 

        try: 

            with SMBus(1) as bus: 

                bus.i2c_rdwr(write) 

            read = i2c_msg.read(CO2_address, number_of_bytes) 

            with SMBus(1) as bus: 

                bus.i2c_rdwr(read) 

                break  # break the trial loop if the above has not failed 

        except:  # if i2c communication fails 

            if attempts >= 3: 

                logger.warning("i2c communication failed 3 times while 

writing to customer memory, skipping reading") 

                return False  # indicate that the writing process failed, 

exit this function 

            else: 

                logger.error("i2c communication failed to read from 

customer memory (" + str(attempts) + "/3)") 

                attempts += 1 

                print("Waiting 3 seconds...", end='\r') 

                time.sleep(3)  # avoid too close i2c communication, let 

time to the sensor, may be busy 

 

    reading = list(read) 

    logger.debug("Reading from custom memory returned " + str(reading)) 

    return reading 

 

 

def write_to_custom_memory(index, *bytes_to_write): 

    """ 

    Write data to a custom memory address in the CO2 sensor internal memory 

    :param index: index of the customer memory to write (see sensor doc) 

    :param bytes_to_write: unlimited amount of bytes to write into the 

internal custom memory at index (see sensor doc) 

    :return: True (Success) or False (Fail) 



 
CO2.py 

132 

    """ 

    logger.debug("Writing " + str(bytes_to_write) + " inside custom memory 

at index " + str(hex(index)) + "...") 

    crc8 = digest([index, *bytes_to_write])  # calculation of the CRC8 

based on the index number and all the bytes sent 

    attempts = 1  # trial counter for writing into the customer memory 

    cycle = 1  # trial counter for i2c communication 

 

    try: 

        with SMBus(1) as bus: 

            write = i2c_msg.write(CO2_address, [0x71, 0x54, index, 

*bytes_to_write, crc8])  # see sensor doc 

            bus.i2c_rdwr(write) 

            logger.debug("i2c writing succeeded") 

            # i2c writing function worked, and sensor didn't replied a NACK 

on the SCK line 

            # (see i2c working principle/theory) 

 

    except: 

        logger.critical("i2c failure while writing to custom memory") 

        return False 

 

    # check that the data are written correctly 

    time.sleep(0.3) 

    reading = read_from_custom_memory(index, len(bytes_to_write)) 

    if reading == [*bytes_to_write]:  # because reading returns a list 

        logger.debug("Success in writing " + str(bytes_to_write) + " inside 

custom memory at index " + str(index)) 

        return reading  # indicate that the writing process succeeded 

 

    else: 

        logger.error("Failed in writing " + str(bytes_to_write) + " inside 

custom memory at index " + str(hex(index))) 

        logger.debug("Value read is " + str(reading) + " in place of " + 

str(bytes_to_write)) 

 

# --------------------------------------------------------------------- 

# Test Execution 

# --------------------------------------------------------------------- 

 

 

# __name__ = '__main__' indicate that the Python sheet has been executed 

directly 

# in opposition with __name__ = '__CO2__' when the Python sheet is executed 

as a library from another Python sheet 

 

# What is below will be executed if user execute this Python code directly 

($ python3 CO2.py) 

# Code below is used to make trials to the CO2 sensor while developing 

 

if __name__ == '__main__': 

    now = datetime.now() 

    logger.info("------------------------------------")  # add a line in 

the log file 

    logger.info("Launching a new execution on the " + 

str(now.strftime("%d/%m/%Y %H:%M:%S"))) 

 

    print("Reading internal timestamp") 

    internal_timestamp() 

    trigger_measurement(force=True) 

 

    while True:  # unstopped loop 



 
HZS 

133 

        get_data() 

        print("waiting 10 seconds...") 

        time.sleep(10)  # wait 10 seconds 

 



 

134 

  
OPCN3.py 
 
#! /home/pi/seacanairy_project/venv/bin/python3 

""" 

Library for the use and operation of the Alphasense OPC-N3 sensor 

""" 

import codecs 

 

import spidev  # driver for the SPI/serial communication 

import time 

import struct  # to convert the IEEE bytes to float 

import datetime 

import sys 

import os  # to create folders/files and read current path 

from progress.bar import IncrementalBar  # beautiful progress bar during 

sampling 

# import RPi.GPIO as GPIO  # used for CS (Chip Select line) 

 

import logging  # save logger messages into memory 

 

# yaml settings 

import yaml  # read user settings 

 

# -------------------------------------------------------- 

# YAML SETTINGS 

# -------------------------------------------------------- 

 

# Get current directory 

current_working_directory = str(os.getcwd()) 

 

with open(current_working_directory + '/seacanairy_settings.yaml') as file: 

    settings = yaml.safe_load(file) 

    file.close() 

 

store_debug_messages = settings['CO2 sensor']['Store debug messages 

(important increase of logs)'] 

 

project_name = settings['Seacanairy settings']['Sampling session name'] 

 

OPC_flushing_time = settings['OPC-N3 sensor']['Flushing time'] 

 

OPC_sampling_time = settings['OPC-N3 sensor']['Sampling time'] 

 

take_new_sample_if_checksum_is_wrong = \ 

    settings['OPC-N3 sensor'][ 

        'Take a new measurement if checksum is wrong (avoid shorter 

sampling periods when errors)'] 

 



 
HZS 

135 

 

# -------------------------------------------------------- 

# LOGGING SETTINGS 

# -------------------------------------------------------- 

# all the settings and other code for the logging 

# logging = keep a trace of some messages in a file to be reviewed 

afterward (check for errors f-e) 

 

 

def set_logger(message_level, log_file): 

    # set up logging to file 

    logging.basicConfig(level=message_level, 

                        format='%(asctime)s %(name)-12s %(levelname)-8s 

%(message)s', 

                        datefmt='%d-%m %H:%M', 

                        filename=log_file, 

                        filemode='a') 

 

    logger = logging.getLogger('OPC-N3')  # name of the logger 

    # all further logging must be called by logger.'level' and not 

logging.'level' 

    # if not, the logging will be displayed as 'ROOT' and NOT 'OPC-N3' 

    return logger 

 

 

if __name__ == '__main__':  # if you run this code directly ($ python3 

CO2.py) 

    message_level = logging.DEBUG  # show ALL the logging messages 

    # Create a file to store the log if it doesn't exist 

    log_file = current_working_directory + "/log/OPCN3-debugging.log"  # 

complete file location required for the Raspberry 

    if not os.path.isfile(log_file): 

        os.mknod(log_file) 

    print("DEBUG messages will be shown and stored in '" + str(log_file) + 

"'") 

    logger = set_logger(message_level, log_file) 

    # define a Handler which writes INFO messages or higher to the 

sys.stderr/display 

    console = logging.StreamHandler() 

    console.setLevel(message_level) 

    # set a format which is simpler for console use 

    formatter = logging.Formatter('%(name)-12s: %(levelname)-8s 

%(message)s') 

    # tell the handler to use this format 

    console.setFormatter(formatter) 

    # add the handler to the root logger 

    logging.getLogger().addHandler(console) 

 

else:  # if this file is considered as a library (if you execute 

'seacanairy.py' for example) 

    # it will only print and store INFO messages and above in the 

corresponding log_file 

    if store_debug_messages: 

        message_level = logging.DEBUG 

    else: 

        message_level = logging.INFO 

    log_file = current_working_directory + "/" + project_name + "/" + 

project_name + "-log.log" 

    # no need to add a handler, because there is already one in 

seacanairy.py 

    logger = set_logger(message_level, log_file) 

 



 
OPCN3.py 

136 

# ---------------------------------------------- 

# SPI CONFIGURATION 

# ---------------------------------------------- 

# configuration of the Serial communication to the sensor 

 

 

bus = 0  # name of the SPI bus on the Raspberry Pi 3B+, only one bus 

device = 0  # name of the SS (Slave Selection) pin used for the OPC-N3 

spi = spidev.SpiDev()  # enable SPI (SPI must be enable in the RPi settings 

beforehand) 

spi.open(bus, device)  # open the spi port at start 

spi.max_speed_hz = 307200  # must be between 300 and 750 kHz 

# Personal experiment shown that UART and SPI speeds must be multiple 

# UART baud rate is 9600 for the GPS sensor 

# 9600 * 2 * 2 * 2 * 2 * 2 = 307200 

# If not, both sensor data are corrupted 

# If not, OPCN3 returns alternately int(48) = hex(0x30) = bytes(00110000) 

spi.mode = 0b01  # bytes(0b01) = int(1) --> SPI mode 1 

# first bit (from right) = CPHA = 0 --> data are valid when clock is rising 

# second bit (from right) = CPOL = 0 --> clock is kept low when idle 

wait_10_milli = 0.015  # 15 ms 

wait_10_micro = 1e-06 

wait_reset_SPI_buffer = 3  # seconds 

time_available_for_initiate_transmission = 10  # seconds - timeout for SPI 

response 

 

 

# if the sensor is disconnected, it can happen that the RPi wait for its 

answer, which never comes... 

# avoid the system to wait for unlimited time for that answer 

 

# CS (chip selection) manually via GPIO - NOT CURRENTLY USED, to switch the 

OPCN3 CS line manually up and down 

# GPIO.setmode(GPIO.BCM)  # use the GPIO names (GPIO1...) instead of the 

processor pin name (BCM...) 

# CS = 25  # GPIO number in which CS is connected 

# GPIO.setup(CS, GPIO.OUT, initial=GPIO.HIGH) 

 

 

# def cs_high(delay=0.010): 

#     """Close communication with OPC-N3 by setting CS on HIGH""" 

#     time.sleep(delay) 

#     # GPIO.output(CS, GPIO.HIGH) 

#     # time.sleep(delay) 

# 

# 

# def cs_low(delay=0.010): 

#     """Open communication with OPC-N3 by setting CS on LOW""" 

#     time.sleep(delay) 

#     # GPIO.output(CS, GPIO.LOW) 

#     # time.sleep(delay) 

 

 

def initiate_transmission(command_byte): 

    """ 

    Initiate SPI transmission to the OPC-N3 

    First loop on the manufacturer's flow Chart 

    :param command_byte: byte to be sent during communication initiation 

    :return: True when SPI initiation has been done, False if it failed 

    """ 

    attempts = 0  # sensor is busy loop 

    cycle = 1  # SPI buffer reset loop (going to the right on the 



 
HZS 

137 

flowchart) 

 

    logger.debug("Initiate transmission with command byte " + 

str(hex(command_byte))) 

 

    stop = time.time() + time_available_for_initiate_transmission 

    # time in seconds at which we consider it took too much time to answer 

 

    # cs_low()  # not used anymore 

 

    while time.time() < stop: 

        # logger.debug("attempts = " + str(attempts))  # disable to reduce 

the amount of time between spi.xfer 

        reading = spi.xfer([command_byte])  # initiate control of power 

state 

 

        # spi.xfer() means write a byte AND READ AT THE SAME TIME 

 

        if reading == [243]:  # SPI ready = 0xF3 = 243 = 0b11110011 

            time.sleep(wait_10_micro) 

            return True  # indicate that the initiation succeeded 

 

        if reading == [49]:  # SPI busy = 0x31 = 49 

            time.sleep(wait_10_milli) 

            attempts += 1 

 

        elif reading == [230] or reading == [99] or reading == [0]: 

            # During developing, I noticed that these were the answers 

given by the sensor when the CS line was 

            # facing troubles. 

            # This comes from personal experiment and not from the official 

documentation 

            # To resolve it, try connecting the CS line directly to the 

ground (current setting) 

            logger.critical("Problem with the SS (Slave Select) line " 

                            "(error code " + str(hex(reading[0])) + "), 

skipping") 

            cycle += 1 

            logger.debug("Check that SS line is well kept DOWN (0V) during 

transmission." 

                         " Try again by connecting SS Line of sensor to 

Ground") 

            print("Waiting SPI Buffer reset (" + str(reading) + ")", 

end='\r') 

            time.sleep(wait_reset_SPI_buffer) 

            return False 

 

        else: 

            logger.critical( 

                "Failed to initiate transmission (unexpected code returned: 

" + str(hex(reading[0])) + ") (" + str( 

                    cycle) + "/3)") 

            print("Waiting SPI Buffer reset (" + str(reading) + ")", 

end='\r') 

            time.sleep(wait_reset_SPI_buffer) 

            cycle += 1  # increment of attempts 

            attempts = 0 

 

        if attempts > 60: 

            # it is recommended to use > 20 in the Alphasense documentation 

            # After experiment it seems that 60 is a good value 

            # (does not take too much time, and let some chance to the 



 
OPCN3.py 

138 

sensor to answer READY) 

            logger.error("Failed 60 times to initiate control of power 

state, reset OPC-N3 SPI buffer, trying again") 

            # cs_high() 

            print("Waiting SPI Buffer reset (" + str(reading) + ")", 

end='\r') 

            time.sleep(wait_reset_SPI_buffer)  # time for spi buffer to 

reset 

 

            attempts = 0  # reset the "SPI busy" loop 

            cycle += 1  # increment of the SPI reset loop 

            # cs_low() 

 

        if cycle >= 3: 

            logger.critical("Failed to initiate transmission (reset 3 times 

SPI, still error)") 

            return False 

 

    logger.critical("Transmission initiation timeout (> " 

                    + str(time_available_for_initiate_transmission) + " 

secs)") 

    return False  # function depending on initiate_transmission function 

will not continue, indicate error 

 

 

def fan_off(): 

    """ 

    Turn OFF the fan of the OPC-N3 

    :return: False if it succeeded turning off the fan, True if it failed 

    """ 

    print("Turning fan OFF", end='\r') 

    logger.debug("Turning fan OFF") 

    attempts = 1 

 

    while attempts < 4: 

        # logger.debug("attempts = " + str(attempts))  # disable to reduce 

the amount of time between spi.xfer 

        if initiate_transmission(0x03): 

            reading = spi.xfer([0x02]) 

            # cs_high() 

            # spi.close()  # close the serial port to let it available for 

another device 

            # Avoid opening and closing ports too ofter. 

            # Avoid getting "too much files opened" error after long 

running time 

            if reading == [0x03]:  # official answer of the OPC-N3 

                print("Fan is OFF                ") 

                # time.sleep(0.5)  # avoid too close communication (AND let 

some time to the OPC-N3 to stop the fan) 

                return False 

            else: 

                time.sleep(1)  # let some time to the OPC-N3 (to try to 

stop the fan) 

                reading = read_DAC_power_status('fan') 

                if reading == 0: 

                    return False 

                elif reading == 1: 

                    attempts += 1 

                    logger.warning("Failed to stop the fan, trying 

again...") 

                    print("Waiting SPI Buffer reset", end='\r') 

                    time.sleep(wait_reset_SPI_buffer) 



 
HZS 

139 

                else: 

                    attempts += 1 

                    print("Waiting SPI Buffer reset", end='\r') 

                    time.sleep(wait_reset_SPI_buffer) 

            if attempts >= 3: 

                logger.critical("Failed 3 consecutive times to stop the 

fan") 

                return True 

        else: 

            logger.critical("Failed to stop the fan (transmission 

problem)") 

            return True 

    return True 

 

 

def fan_on(): 

    """ 

    Turn ON the fan of the OPC-N3 

    :return: True if it succeeded turning off the fan, False if it failed 

    """ 

    print("Turning fan ON", end='\r') 

    logger.debug("Turning fan ON") 

 

    attempts = 1 

 

    while attempts < 4: 

        # logger.debug("attempts = " + str(attempts))  # disable to reduce 

the amount of time between spi.xfer 

        if initiate_transmission(0x03): 

            logger.debug("attempts = " + str(attempts)) 

            reading = spi.xfer([0x03]) 

            # cs_high() 

            # spi.close()  # close the serial port to let it available for 

another device 

            # Avoid opening and closing ports too ofter. 

            # Avoid getting "too much files opened" error after long 

running time 

            time.sleep(0.6)  # wait > 600 ms to let the fan start 

            if reading == [0x03]:  # official answer of the OPC-N3 

                print("Fan is ON               ") 

                time.sleep(0.5)  # avoid too close communication 

                return True  # indicate that fan has started 

            else: 

                time.sleep(1)  # let time to the OPC-N3 to try to start the 

fan 

                reading = read_DAC_power_status('fan') 

                if reading == 1: 

                    return True  # indicate that fan has started 

                elif reading == 0: 

                    logger.error("Failed to start the fan...") 

                    attempts += 1 

                    print("Waiting SPI Buffer reset", end='\r') 

                    time.sleep(wait_reset_SPI_buffer) 

                else: 

                    attempts += 1 

                    print("Waiting SPI Buffer reset", end='\r') 

                    time.sleep(wait_reset_SPI_buffer) 

            if attempts >= 3: 

                log = "Failed 3 consecutive times to start the fan" 

                logger.critical(log) 

                return False  # indicate that fan is OFF 

        else: 



 
OPCN3.py 

140 

            logger.critical("Failed to start the fan (transmission 

problem)") 

            return False 

    return True 

 

 

def laser_on(): 

    """ 

    Turn ON the laser of the OPC-N3 

    :return: True if it succeeded turning off the laser, False if it failed 

    """ 

    print("Turning laser ON", end='\r') 

    logger.debug("Turning laser ON") 

    attempts = 0 

 

    while attempts < 4: 

        # logger.debug("attempts = " + str(attempts))  # disable to reduce 

the amount of time between spi.xfer 

        if initiate_transmission(0x03): 

            reading = spi.xfer([0x07]) 

            # cs_high() 

            # spi.close()  # close the serial port to let it available for 

another device 

            # Avoid opening and closing ports too ofter. 

            # Avoid getting "too much files opened" error after long 

running time 

            if reading == [0x03]: 

                print("Laser is ON           ") 

                time.sleep(.5)  # avoid too close communication 

                return True  # indicate that the laser is ON 

            else: 

                time.sleep(1)  # let time to the OPC-N3 to try to start the 

laser 

                reading = read_DAC_power_status('laser') 

                if reading == 1: 

                    logger.info("Wrong answer received after SPI writing, 

but laser is well on") 

                    return True  # indicate that the laser is ON 

                elif reading == 0: 

                    logger.error("Failed to start the laser, trying 

again...") 

                    attempts += 1 

                    print("Waiting SPI Buffer reset", end='\r') 

                    time.sleep(wait_reset_SPI_buffer) 

                else: 

                    attempts += 1 

                    print("Waiting SPI Buffer reset", end='\r') 

                    time.sleep(wait_reset_SPI_buffer) 

            if attempts >= 3: 

                logger.critical("Failed 3 consecutive times to start the 

laser") 

                return False  # indicate that laser is still off 

        else: 

            logger.critical("Failed to start the laser (transmission 

problem)") 

            return False 

    return False 

 

 

def laser_off(): 

    """ 

    Turn OFF the laser of the OPC-N3 



 
HZS 

141 

    :return: False if it succeeded turning off the laser, True if it failed 

    """ 

    print("Turning the laser OFF", end='\r') 

    logger.debug("Turning laser OFF") 

    attempts = 0 

 

    while attempts < 4: 

        # logger.debug("attempts = " + str(attempts))  # disable to reduce 

the amount of time between spi.xfer 

        if initiate_transmission(0x03): 

            reading = spi.xfer([0x06]) 

            # cs_high() 

            # spi.close()  # close the serial port to let it available for 

another device 

            # Avoid opening and closing ports too ofter. 

            # Avoid getting "too much files opened" error after long 

running time 

            if reading == [0x03]: 

                print("Laser is OFF                    ") 

                # time.sleep(1)  # avoid too close communication 

                return False 

            else: 

                time.sleep(1)  # let time to the OPC-N3 to try to stop the 

laser 

                reading = read_DAC_power_status('laser') 

                if reading == 0: 

                    logger.info("Wrong answer received after writing, but 

laser is well off") 

                    return False 

                elif reading == 1: 

                    logger.error("Failed to stop the laser (code returned 

is " + str(reading) + "), trying again...") 

                    attempts += 1 

                    print("Waiting SPI Buffer reset", end='\r') 

                    time.sleep(wait_reset_SPI_buffer) 

                else: 

                    attempts += 1 

                    print("Waiting SPI Buffer reset", end='\r') 

                    time.sleep(wait_reset_SPI_buffer) 

            if attempts >= 3: 

                logger.critical("Failed 4 times to stop the laser") 

                return True  # indicate that laser is still on 

        else: 

            logger.critical("Failed to stop the laser (transmission 

problem)") 

            return True 

    return True 

 

 

def read_DAC_power_status(item='all'): 

    """ 

    Read the status of the Digital to Analog Converter as well as the Power 

Status 

    Try only one time to read the byte(s) 

    :param item: 'fan', 'laser', fanDAC', 'laserDAC', 'laser_switch', 

'gain', 'auto_gain_toggle', 'all' 

    :return: DAC power byte, 5 status bytes if argument is 'all' 

    """ 

    print("Reading DAC power status", end='\r') 

    if initiate_transmission(0x13): 

        response = spi.xfer([0x13, 0x13, 0x13, 0x13, 0x13, 0x13]) 

        # cs_high() 



 
OPCN3.py 

142 

        # spi.close()  # close the serial port to let it available for 

another device 

        # Avoid opening and closing ports too ofter. 

        # Avoid getting "too much files opened" error after long running 

time 

        time.sleep(0.5)  # avoid too close communication 

 

        if item == 'fan': 

            logger.debug("DAC power status for " + str(item) + " is " + 

str(response[0])) 

            return response[0] 

        elif item == 'laser': 

            logger.debug("DAC power status for " + str(item) + " is " + 

str(response[1])) 

            return response[1] 

        elif item == 'fanDAC': 

            logger.debug("DAC power status for " + str(item) + " is " + 

str(response[2])) 

            response = 1 - (response[2] / 255) * 100  # see documentation 

concerning fan pot 

            logger.info("Fan is running at " + str(response) + "% (0 = 

slow, 100 = fast)") 

            return response 

        elif item == 'laserDAC': 

            logger.debug("DAC power status for " + str(item) + " is " + 

str(response[3])) 

            response = response[3] / 255 * 100  # see documentation 

concerning laser pot 

            logger.debug("Laser is at " + str(response) + "% of its maximal 

power") 

            return response 

        elif item == 'laser_switch': 

            logger.debug("DAC power status for " + str(item) + " is " + 

str(response[4])) 

            return response[4] 

        elif item == 'gain': 

            response = response[5] & 0x01 

            logger.debug("DAC power status for " + str(item) + " is " + 

str(response)) 

            return response 

        elif item == 'auto_gain_toggle': 

            response = response[5] & 0x02 

            logger.debug("DAC power status for " + str(item) + " is " + 

str(response)) 

            return response 

        elif item is 'all': 

            logger.debug("Full DAC power status is " + str(list(response))) 

            return response 

        else: 

            raise ValueError("Argument of 'read_ADC_power_status' is 

unknown, check your code!") 

 

    else: 

        print("Waiting SPI Buffer reset", end='\r') 

        time.sleep(wait_reset_SPI_buffer) 

        return False  # indicate an error 

 

 

def digest(data): 

    """ 

    Calculate the CRC8 Checksum with the bytes received 

    :param data: list containing an infinite number of bytes with which to 



 
HZS 

143 

calculate the checksum 

    :return: calculated checksum 

    """ 

    crc = 0xFFFF 

 

    for byteCtr in range(0, len(data)): 

        to_xor = int(data[byteCtr]) 

        crc ^= to_xor 

        for bit in range(0, 8): 

            if (crc & 1) == 1: 

                crc >>= 1 

                crc ^= 0xA001 

            else: 

                crc >>= 1 

    # log = "Checksum is " + str(crc) 

    # logger.debug(log) 

    return crc & 0xFFFF 

 

 

def check(checksum, *data): 

    """ 

    Check that the data received are correct, based on those data and the 

checksum given 

    :param checksum: checksum sent by the sensor (the last byte in any 

transmission) 

    :param data: bytes sent by the sensor, with which to calculate the 

checksum 

    :return: True if data are corrects, False if they are not 

    """ 

    to_digest = [] 

    for i in data: 

        to_digest.extend(i) 

    if digest(to_digest) == join_bytes(checksum): 

        log = "Checksum is correct" 

        logger.debug(log) 

        return True 

    else: 

        log = "Checksum is wrong" 

        logger.debug(log) 

        return False 

 

 

def convert_IEEE754(value): 

    """ 

    Join bytes and convert them to float according to the IEEE754 

encryption 

    :param value: list containing the two bytes to decrypt 

    :return: decrypted float 

    """ 

    value = join_bytes(value) 

    answer = struct.unpack('f', bytes(value)) 

    return answer 

 

 

def loading_bar(name, delay): 

    """ 

    Show a loading bar on the screen during a certain amount of time. 

    Make the user understand the software is doing/waiting for something 

    :param name: text to be shown on the left of the loading bar (waiting, 

sampling...) 

    :param delay: amount of time the system is waiting (seconds) 

    :return: nothing 



 
OPCN3.py 

144 

    """ 

    bar = IncrementalBar(name, max=(2 * delay), suffix='%(elapsed)s/' + 

str(delay) + ' seconds') 

    for i in range(2 * delay): 

        time.sleep(0.5) 

        bar.next() 

    bar.finish() 

    return 

 

 

def PM_reading(): 

    """ 

    Read the PM bytes only from the OPC-N3 sensor 

    Read the data and convert them in readable format, checksum enabled 

    Does neither start the fan nor start the laser 

    Recommended to use read_histogram() instead of this function 

    :return: List[PM 1, PM2.5, PM10] 

    """ 

    print("YOU SHOULD BETTER USE OPCN3.read_histogram()") 

    attempts = 1 

    while attempts < 4: 

        if initiate_transmission(0x32): 

            PM_A = spi.xfer([0x32, 0x32, 0x32, 0x32]) 

            PM_B = spi.xfer([0x32, 0x32, 0x32, 0x32]) 

            PM_C = spi.xfer([0x32, 0x32, 0x32, 0x32]) 

            checksum = spi.xfer([0x32, 0x32]) 

            # spi.close() 

 

            PM1 = round(struct.unpack('f', bytes(PM_A))[0], 3) 

            PM25 = round(struct.unpack('f', bytes(PM_B))[0], 3) 

            PM10 = round(struct.unpack('f', bytes(PM_C))[0], 3) 

 

            if check(checksum, PM_A, PM_B, PM_C): 

                print("PM 1:", PM1, "mg/m3\t|\tPM 2.5:", PM25, 

"mg/m3\t|\tPM10:", PM10, "mg/m3") 

                time.sleep(0.5)  # avoid too close SPI communication 

                return [PM1, PM25, PM10] 

            if attempts >= 4: 

                log = "PM data wrong 3 consecutive times, skipping PM 

measurement" 

                logger.critical(log) 

                return ["error", "error", "error"] 

            else: 

                attempts += 1 

                log = "Checksum for PM data is not correct, reading again 

(" + str(attempts) + "/3)" 

                logger.error(log) 

                time.sleep(0.5)  # avoid too close SPI communication 

 

 

def getPM(flushing_time, sampling_time, start_fan_laser=True): 

    """ 

    Get PM measurement from OPC-N3 

    Recommended to use get_data() instead of this function 

    :param flushing_time: time (seconds) during which the fan runs alone to 

flush the sensor with fresh air 

    :param sampling_time: time (seconds) during which the laser reads the 

particulate matter in the air 

    :return: List[PM1, PM2.5, PM10] 

    """ 

    print("YOU SHOULD BETTER USE OPCN3.read_histogram()") 

    try: 



 
HZS 

145 

        if start_fan_laser: 

            fan_on() 

            time.sleep(flushing_time) 

            laser_on() 

        print("Starting sampling")  # will be printed on the same line as 

"Laser is ON" 

        time.sleep(sampling_time) 

        PM = PM_reading() 

 

        laser_off() 

        fan_off() 

    except SystemExit or KeyboardInterrupt:  # to stop the laser and the 

fan in case of error or shutting down the program 

        laser_off() 

        fan_off() 

        raise 

    return PM 

 

 

def read_histogram(sampling_period, delete_previous=True): 

    """ 

    Read all the available data from the OPC-N3 

    It first read the histogram to remove the old data remaining in the 

OPCN3 buffer 

    Then it let the sensor take sample during the defined sampling period 

    Finally it read a last time the histogram data returned by the sensor 

    It decode the bytes returned into readable format 

    It returns everything in a dictionary 

    :param: sampling_period: amount of time (seconds) during while the fan 

is running and laser is sampling 

    :return: Dictionary{"PM 1", "PM 2.5", "PM 10", "temperature", "relative 

humidity", "bin", "MToF", "sampling time", 

                  "sample flow rate", "reject count glitch", "reject count 

longTOF", "reject count ratio", 

                  "reject count out of range", "fan revolution count", 

"laser status"} 

    """ 

    logger.debug("Reading histogram...") 

    print("Reading histogram...", end='\r') 

 

    # Create a dictionary containing data to be returned in case of error 

    to_return = { 

        "PM 1": "error", 

        "PM 2.5": "error", 

        "PM 10": "error", 

        "temperature": "error", 

        "relative humidity": "error", 

        "sampling time": "error", 

        "sample flow rate": "error", 

        "reject count glitch": "error", 

        "reject count long TOF": "error", 

        "reject count ratio": "error", 

        "reject count out of range": "error", 

        "fan revolution count": "error", 

        "laser status": "error", 

        "bin 0": "error", 

        "bin 1": "error", 

        "bin 2": "error", 

        "bin 3": "error", 

        "bin 4": "error", 

        "bin 5": "error", 

        "bin 6": "error", 



 
OPCN3.py 

146 

        "bin 7": "error", 

        "bin 8": "error", 

        "bin 9": "error", 

        "bin 10": "error", 

        "bin 11": "error", 

        "bin 12": "error", 

        "bin 13": "error", 

        "bin 14": "error", 

        "bin 15": "error", 

        "bin 16": "error", 

        "bin 17": "error", 

        "bin 18": "error", 

        "bin 19": "error", 

        "bin 20": "error", 

        "bin 21": "error", 

        "bin 22": "error", 

        "bin 23": "error", 

        "bin 1 MToF": "error", 

        "bin 3 MToF": "error", 

        "bin 5 MToF": "error", 

        "bin 7 MToF": "error" 

    } 

 

    # Delete old histogram data and start a new one 

    if delete_previous: 

        if initiate_transmission(0x30): 

            answer = spi.xfer([0x00] * 86) 

            logger.debug("SPI reading is:\r" + str(answer)) 

            # spi.close() 

            logger.debug("Old histogram in the OPC-N3 deleted, starting a 

new one") 

        else: 

            logger.critical("Failed to initiate histogram, skipping this 

measurement") 

            return to_return  # indicate clearly an error in the data 

recording 

 

    delay = sampling_period * 2  # you must wait two times the 

sampling_period in order that 

    # the sampling time given by the OPC-N3 respects your sampling time 

wishes 

    # first 5 seconds are with low gain, and the next seconds are with high 

gain (automatically performed by OPC-N3) 

    print("                                             ", end='\r')  # 

remove last line 

 

    # Reading the histogram delete all the data in the OPCN3's buffer 

    # If the checksum is wrong, seacanairy don't get the data as expected 

    # Nevertheless, OPCN3 clean its buffer and all data are lost 

    # So you must wait another x seconds to get sample 

    if not take_new_sample_if_checksum_is_wrong: 

        loading_bar('Sampling PM', delay) 

 

    attempts = 1  # reset the counter for next measurement 

    while attempts < 4: 

        # If the user want to take a nex sample in case the checksum is 

wrong (see explanation above), then 

        # the system must wait the required amount of time in the reading 

loop 

        if take_new_sample_if_checksum_is_wrong: 

            loading_bar('Sampling PM', delay) 

 



 
HZS 

147 

        if initiate_transmission(0x30): 

            # read all the bytes and store them in a dedicated variable 

            # see sensor documentation for more info 

            bin = spi.xfer([0x00] * 48) 

            MToF = spi.xfer([0x00] * 4) 

            sampling_time = spi.xfer([0x00] * 2) 

            sample_flow_rate = spi.xfer([0x00] * 2) 

            temperature = spi.xfer([0x00] * 2) 

            relative_humidity = spi.xfer([0x00] * 2) 

            PM_A = spi.xfer([0x00] * 4) 

            PM_B = spi.xfer([0x00] * 4) 

            PM_C = spi.xfer([0x00] * 4) 

            reject_count_glitch = spi.xfer([0x00] * 2) 

            reject_count_longTOF = spi.xfer([0x00] * 2) 

            reject_count_ratio = spi.xfer([0x00] * 2) 

            reject_count_Out_Of_Range = spi.xfer([0x00] * 2) 

            fan_rev_count = spi.xfer([0x00] * 2) 

            laser_status = spi.xfer([0x00] * 2) 

            checksum = spi.xfer([0x00] * 2) 

            # spi.close() 

 

            # check that the data transmitted are correct by comparing the 

checksums 

            # if the checksum is correct, then proceed... 

            if check(checksum, bin, MToF, sampling_time, sample_flow_rate, 

temperature, relative_humidity, 

                     PM_A, PM_B, 

                     PM_C, reject_count_glitch, reject_count_longTOF, 

reject_count_ratio, reject_count_Out_Of_Range, 

                     fan_rev_count, laser_status): 

                logger.debug("SPI reading is:\r" + str(bin) + " " + 

str(MToF) + " " + str(sampling_time) 

                             + " " + str(sample_flow_rate) + " " + 

str(temperature) + " " + str(relative_humidity) 

                             + " " + str(PM_A) + " " + str(PM_B) + " " + 

str(PM_C) + " " + str(reject_count_glitch) 

                             + " " + str(reject_count_longTOF) + " " + 

str(reject_count_ratio) + " " 

                             + str(reject_count_Out_Of_Range) + " " + 

str(fan_rev_count) 

                             + " " + str(laser_status)) 

                # return TRUE if the data are correct, and execute the 

below 

 

                # decode the bytes according to the IEEE 754 32 bytes 

floating point format into decimals 

                # rounding until 2 decimals, as this is the accuracy of the 

OPC-N3 for PM values 

                PM1 = round(struct.unpack('f', bytes(PM_A))[0], 2) 

                PM25 = round(struct.unpack('f', bytes(PM_B))[0], 2) 

                PM10 = round(struct.unpack('f', bytes(PM_C))[0], 2) 

                print("PM 1:\t", PM1, " mg/m3", end="\t\t|\t") 

                print("PM 2.5:\t", PM25, " mg/m3", end="\t\t|\t") 

                print("PM 10:\t", PM10, " mg/m3") 

 

                relative_humidity = round(100 * 

(join_bytes(relative_humidity) / (2 ** 16 - 1)), 2) 

                temperature = round(-45 + 175 * (join_bytes(temperature) / 

(2 ** 16 - 1)), 2)  # conversion in °C 

                print("Temperature:", temperature, " °C (PCB Board)\t| 

\tRelative Humidity:", relative_humidity, 

                      " %RH (PCB Board)") 



 
OPCN3.py 

148 

 

                sampling_time = join_bytes(sampling_time) / 100 

                print(" Sampling period:", sampling_time, "seconds", 

end="\t\t|\t") 

                sample_flow_rate = join_bytes(sample_flow_rate) / 100 

                print(" Sampling flow rate:", sample_flow_rate, "mL/s |", 

round(sample_flow_rate * 60, 2), "mL/min |", 

                      round(sample_flow_rate * 60 * 60 / 1000, 2), "L/h") 

                # This is the amount of air passing through the laser beam, 

not the total sampling flow rate! 

 

                reject_count_glitch = join_bytes(reject_count_glitch) 

                print(" Reject count glitch:", reject_count_glitch, 

end="\t\t|\t") 

                reject_count_longTOF = join_bytes(reject_count_longTOF) 

                print(" Reject count long TOF:", reject_count_longTOF) 

                reject_count_ratio = join_bytes(reject_count_ratio) 

                print(" Reject count ratio:", reject_count_ratio, 

end="\t\t|\t") 

                reject_count_Out_Of_Range = 

join_bytes(reject_count_Out_Of_Range) 

                print(" Reject count Out Of Range:", 

reject_count_Out_Of_Range) 

                fan_rev_count = join_bytes(fan_rev_count) 

                print(" Fan revolutions count:", fan_rev_count, 

end="\t\t|\t") 

                laser_status = join_bytes(laser_status) 

                print(" Laser status:", laser_status) 

 

                to_return = { 

                    "PM 1": PM1, 

                    "PM 2.5": PM25, 

                    "PM 10": PM10, 

                    "temperature": temperature, 

                    "relative humidity": relative_humidity, 

                    "sampling time": sampling_time, 

                    "sample flow rate": sample_flow_rate, 

                    "reject count glitch": reject_count_glitch, 

                    "reject count long TOF": reject_count_longTOF, 

                    "reject count ratio": reject_count_ratio, 

                    "reject count out of range": reject_count_Out_Of_Range, 

                    "fan revolution count": fan_rev_count, 

                    "laser status": laser_status, 

                    "bin 0": join_bytes(bin[0:1]), 

                    "bin 1": join_bytes(bin[2:3]), 

                    "bin 2": join_bytes(bin[4:5]), 

                    "bin 3": join_bytes(bin[6:7]), 

                    "bin 4": join_bytes(bin[8:9]), 

                    "bin 5": join_bytes(bin[10:11]), 

                    "bin 6": join_bytes(bin[12:13]), 

                    "bin 7": join_bytes(bin[14:15]), 

                    "bin 8": join_bytes(bin[16:17]), 

                    "bin 9": join_bytes(bin[18:19]), 

                    "bin 10": join_bytes(bin[20:21]), 

                    "bin 11": join_bytes(bin[22:23]), 

                    "bin 12": join_bytes(bin[24:25]), 

                    "bin 13": join_bytes(bin[26:27]), 

                    "bin 14": join_bytes(bin[28:29]), 

                    "bin 15": join_bytes(bin[30:31]), 

                    "bin 16": join_bytes(bin[32:33]), 

                    "bin 17": join_bytes(bin[34:35]), 

                    "bin 18": join_bytes(bin[36:37]), 



 
HZS 

149 

                    "bin 19": join_bytes(bin[38:39]), 

                    "bin 20": join_bytes(bin[40:41]), 

                    "bin 21": join_bytes(bin[42:43]), 

                    "bin 22": join_bytes(bin[44:45]), 

                    "bin 23": join_bytes(bin[46:47]), 

                    "bin 1 MToF": MToF[0]/3, 

                    "bin 3 MToF": MToF[1]/3, 

                    "bin 5 MToF": MToF[2]/3, 

                    "bin 7 MToF": MToF[3]/3, 

                } 

 

                print(" Bin number:\t", end='') 

                for i in range(0, 24): 

                    print(to_return["bin " + str(i)], end=", ") 

                print("")  # go to next line 

                print(" MToF:\t\t", end='') 

 

                for i in range(0, 4): 

                    i = (i * 2) + 1 

                    print(to_return["bin " + str(i) + " MToF"], end=", ") 

                print("")  # go to next line 

 

                if sampling_time > (sampling_period + 0.5):  # we tolerate 

a difference of 0.5 seconds 

                    log = "Sampling period of the sensor was " \ 

                          + str(round(sampling_time - sampling_period, 2)) 

+ " seconds longer than expected" 

                    logger.warning(log) 

 

                elif sampling_time < (sampling_period - 0.5): 

                    logger.warning("Sampling period of the sensor was " 

                                   + str(round(sampling_period - 

sampling_time, 2)) + " seconds shorter than expected") 

 

                return to_return 

 

            else: 

                # if the function with the checksum return an error (FALSE) 

                logger.warning( 

                    "Error in the data received (wrong checksum), reading 

histogram again... (" + str(attempts) + "/3)") 

                logger.warning("Data received were:\n" + str(bin) + 

str(MToF) + str(sampling_time) + 

                               str(sample_flow_rate) + str(temperature) + 

                               str(relative_humidity) + str(PM_A) + 

str(PM_B) + 

                               str(PM_C) + str(reject_count_glitch) + 

                               str(reject_count_longTOF) + 

str(reject_count_ratio) + 

                               str(reject_count_Out_Of_Range) + 

str(fan_rev_count) + 

                               str(laser_status) + str(checksum)) 

                print("Waiting SPI Buffer reset", end='\r') 

                time.sleep(wait_reset_SPI_buffer)  # let some times between 

two SPI communications 

                attempts += 1 

        else: 

            logger.critical("Failed to read histogram (transmission 

initiation problem)") 

            return to_return 

 

        if attempts >= 3: 



 
OPCN3.py 

150 

            logger.error("Data were wrong 3 times (wrong checksum), 

skipping this histogram reading") 

            logger.warning("Data received were:\n" + str(bin) + str(MToF) + 

str(sampling_time) + 

                           str(sample_flow_rate) + str(temperature) + 

                           str(relative_humidity) + str(PM_A) + str(PM_B) + 

                           str(PM_C) + str(reject_count_glitch) + 

                           str(reject_count_longTOF) + 

str(reject_count_ratio) + 

                           str(reject_count_Out_Of_Range) + 

str(fan_rev_count) + 

                           str(laser_status) + str(checksum)) 

            print("Waiting SPI Buffer reset", end='\r') 

            time.sleep(wait_reset_SPI_buffer) 

            return to_return 

 

 

def get_data(flushing_time, sampling_time, start_fan_laser=True): 

    """ 

    Get all the possible data from the OPC-N3 sensor 

    Start the fan, flush air during defined time, start the laser, 

    sample the air during defined time, turn off the laser and the fan 

    :param flushing_time: time during which the ventilator is running 

without sampling 

                            to refresh the air inside the casing 

    :param sampling_time: time during which the sensor is sampling 

    :return: Dictionary{"PM 1", "PM 2.5", "PM 10", "temperature", "relative 

humidity", "bin", "MToF", "sampling time", 

                  "sample flow rate", "reject count glitch", "reject count 

longTOF", "reject count ratio", 

                  "reject count out of range", "fan revolution count", 

"laser status"} 

    """ 

    # return "error" everywhere in case of error during the measurement 

(fan_on/laser_on/read_histogram...) 

    # seacanairy.py need to find the items in the dictionary, if not if 

crash 

    to_return = { 

        "PM 1": "error", 

        "PM 2.5": "error", 

        "PM 10": "error", 

        "temperature": "error", 

        "relative humidity": "error", 

        "sampling time": "error", 

        "sample flow rate": "error", 

        "reject count glitch": "error", 

        "reject count long TOF": "error", 

        "reject count ratio": "error", 

        "reject count out of range": "error", 

        "fan revolution count": "error", 

        "laser status": "error", 

        "bin 0": "error", 

        "bin 1": "error", 

        "bin 2": "error", 

        "bin 3": "error", 

        "bin 4": "error", 

        "bin 5": "error", 

        "bin 6": "error", 

        "bin 7": "error", 

        "bin 8": "error", 

        "bin 9": "error", 

        "bin 10": "error", 



 
HZS 

151 

        "bin 11": "error", 

        "bin 12": "error", 

        "bin 13": "error", 

        "bin 14": "error", 

        "bin 15": "error", 

        "bin 16": "error", 

        "bin 17": "error", 

        "bin 18": "error", 

        "bin 19": "error", 

        "bin 20": "error", 

        "bin 21": "error", 

        "bin 22": "error", 

        "bin 23": "error", 

        "bin 1 MToF": "error", 

        "bin 3 MToF": "error", 

        "bin 5 MToF": "error", 

        "bin 7 MToF": "error" 

    } 

    try:  # necessary to put an except condition (see below) 

        if start_fan_laser: 

            if not fan_on(): 

                logger.critical("Skipping histogram reading") 

                return to_return 

        print("Flushing fresh air", end='\r') 

        time.sleep(flushing_time / 2) 

        if start_fan_laser: 

            if not laser_on(): 

                logger.critical("Skipping histogram reading") 

                fan_off() 

                return to_return 

        print("Flushing fresh air", end='\r') 

        time.sleep(flushing_time / 2) 

        to_return = read_histogram(sampling_time) 

        laser_off() 

        fan_off() 

        # spi.close() 

        return to_return 

 

    except(KeyboardInterrupt, SystemExit):  # in case of error AND if user 

stop the software during sampling 

        # Avoid that the laser and the fan keep running indefinitely if 

system crash 

        print("  ")  # go to the next line 

        logger.info("Python instance has been stopped, shutting laser and 

fan OFF...") 

        laser_off() 

        fan_off() 

        raise 

 

 

def join_bytes(list_of_bytes): 

    """ 

    Join bytes to an integer, from byte 0 to byte infinite (right to left) 

    :param list_of_bytes: list [bytes coming from the spi.readbytes or 

spi.xfer functions] 

    :return: bytes concatenated to an integer 

    """ 

    val = 0 

    for i in reversed(list_of_bytes): 

        val = val << 8 | i 

    return val 

 



 
OPCN3.py 

152 

 

def set_fan_speed(speed_percent): 

    """ 

    Set the sensor fan speed 

    Reduce fan speed can decrease dust deposition in the sensor casing 

    Argument in percent, calibrated from the slowest as possible to the 

fastest 

 

    :param speed_percent: number between 0 and 100 (0 = slowest, 100 = 

fastest) 

    :return: nothing 

    """ 

    if speed_percent < 0 or speed_percent > 100: 

        raise ValueError("Fan speed of OPC-N3 sensor must be a number 

between 0 and 100 (0 = slowest, 100 = fastest") 

    value = int((45 + speed_percent / 100 * 55) / 100 * 255) 

    # Personal investigations shows that the fan don't work below 45% 

    # Formula makes a calculation to convert 0% as 45% --> easier for user 

input 

    if initiate_transmission(0x42): 

        reading = spi.xfer([0, value]) 

        logger.info("Fan speed is set on " + str(speed_percent) + " (0 = 

the slowest, 100 = the fastest)") 

    else: 

        logger.error("Failed to set the fan speed") 

 

 

def initialization_SPI(): 

    """ 

    Initialize the OPCN3 SPI system 

    To be executed once after Seacanairy power up 

    To be executed on time only after powering up the OPCN3 

    :return: nothing 

    """ 

    print("Initializing OPCN3 SPI...", end='\r') 

 

    # Make any communication to start the Sensor SPI 

    # Personal investigations shows that first communication is always lost 

    answer = [] 

    if initiate_transmission(0x3F): 

        answer += spi.xfer([0x3F]) 

        for _ in range(63): 

            answer += spi.xfer([0x3F]) 

            if answer[-2:] == [0x42, 0x53]: 

                pass 

        string = '' 

        for x in range(len(answer)): 

            string += chr(answer[x]) 

 

        print("OPCN3 infostring: '" + str(string) + "'") 

 

    return 

 

 

if __name__ == '__main__': 

    # The code below runs if you execute this code from this file (you must 

execute OPC-N3 and not seacanairy) 

    while True: 

        logger.debug("Code is running from the OPC-N3 file itself, debug 

messages shown") 

        # fan_on() 

        # read_DAC_power_status('fan') 



 
HZS 

153 

        # time.sleep(1) 

        # laser_on() 

        # read_DAC_power_status('laser') 

        # time.sleep(1) 

        # laser_off() 

        # read_DAC_power_status('laser') 

        # time.sleep(1) 

        # fan_off() 

        # read_DAC_power_status('fan') 

        # print("sleep") 

        # time.sleep(3) 

 

        get_data(2, 3) 

        print("sleep") 

        time.sleep(5) 

 



 

154 

  
AFE.py 
 
from datetime import datetime 

import time 

import os.path 

import yaml 

import logging 

import sys 

import threading 

from progress.bar import IncrementalBar  # to show beautiful loading bar on 

the screen during sampling 

 

# -------------------------------------------------- 

# I2C 

# -------------------------------------------------- 

from smbus2 import SMBus 

from sys import exit 

 

# emplacement variable 

bus = SMBus(1) 

 

# attributed canals and associated emplacements variable 

address = 0b1110110 

 

# -------------------------------------------------------- 

# YAML SETTINGS 

# -------------------------------------------------------- 

 

# Get current directory 

current_working_directory = str(os.getcwd()) 

 

with open(current_working_directory + '/seacanairy_settings.yaml') as file: 

    settings = yaml.safe_load(file) 

    file.close() 

 

store_debug_messages = settings['AFE Board']['Store debug messages 

(important increase of logs)'] 

 

project_name = settings['Seacanairy settings']['Sampling session name'] 

 

 

# -------------------------------------------------------- 

# LOGGING SETTINGS 

# -------------------------------------------------------- 

# all the settings and other code for the logging 

# logging = tak a trace of some messages in a file to be reviewed afterward 

(check for errors fe) 

 



 
HZS 

155 

 

def set_logger(message_level, log_file): 

    # set up logging to file 

    logging.basicConfig(level=message_level, 

                        format='%(asctime)s %(name)-12s %(levelname)-8s 

%(message)s', 

                        datefmt='%d-%m %H:%M', 

                        filename=log_file, 

                        filemode='a') 

 

    logger = logging.getLogger('AFE Board')  # name of the logger 

    # all further logging must be called by logger.'level' and not 

logging.'level' 

    # if not, the logging will be displayed as 'ROOT' and NOT 'OPC-N3' 

    return logger 

 

 

if __name__ == '__main__':  # if you run this code directly ($ python3 

CO2.py) 

    message_level = logging.DEBUG  # show ALL the logging messages 

    # Create a file to store the log if it doesn't exist 

    log_file = current_working_directory + "/log/Alphasense_board-

debugging.log" 

    if not os.path.isfile(log_file): 

        os.mknod(log_file) 

    print("Alphasense Board DEBUG messages will be shown and stored in '" + 

str(log_file) + "'") 

    logger = set_logger(message_level, log_file) 

    # define a Handler which writes INFO messages or higher to the 

sys.stderr/display 

    console = logging.StreamHandler() 

    console.setLevel(message_level) 

    # set a format which is simpler for console use 

    formatter = logging.Formatter('%(name)-12s: %(levelname)-8s 

%(message)s') 

    # tell the handler to use this format 

    console.setFormatter(formatter) 

    # add the handler to the root logger 

    logging.getLogger().addHandler(console) 

 

else:  # if this file is considered as a library (if you execute 

'seacanairy.py' for example) 

    # it will only print and store INFO messages and above in the 

corresponding log_file 

    if store_debug_messages: 

        message_level = logging.DEBUG 

    else: 

        message_level = logging.INFO 

    log_file = '/home/pi/seacanairy_project/log/' + project_name + '-

log.log'  # complete location needed on the RPI 

    # no need to add a handler, because there is already one in 

seacanairy.py 

    logger = set_logger(message_level, log_file) 

 

# all further logging must be called by logger.'level' and not 

logging.'level' 

# if not, the logging will be displayed as 'ROOT' and NOT 'GPS' 

 

# -------------------------------------------------- 

# ADC channels 

# -------------------------------------------------- 

 



 
AFE.py 

156 

# Channel Address - Single channel use 

# See LTC2497 data sheet, Table 3, Channel Selection. 

# All channels are uncommented - comment out the channels you do not plan 

to use. 

 

channel0 = 0xB0 

channel1 = 0xB8 

channel2 = 0xB1 

channel3 = 0xB9 

channel4 = 0xB2 

channel5 = 0xBA 

channel6 = 0xB3 

channel7 = 0xBB 

channel8 = 0xB4 

channel9 = 0xBC 

channel10 = 0xB5 

channel11 = 0xBD 

channel12 = 0xB6 

channel13 = 0xBE 

channel14 = 0xB7 

channel15 = 0xBF 

 

# reference voltage of the ADC 

vref = 5 

 

# To calculate the voltage, the number read in is 3 bytes. The first bit is 

ignored. 

# Max reading is 2^23 or 8,388,608 

max_reading = 8388608.0 

 

# lange = number of bytes to read. A minimum of 3 bytes are read in. 

# In this sample we read in 6 bytes, ignoring the last three bytes 

# zeit = tells how frequently you want the readings to be read from the 

ADC. 

# Define the time to sleep between the readings. 

# tiempo = shows how frequently each channel is read in over the I2C bus. 

# Best to use timepo between each successive readings. 

 

lange = 0x06  # number of bytes to read in the block 

zeit = 15  # number of seconds to sleep between each measurement 

sleep = 0.2  # number of seconds to sleep between each channel reading 

 

# has to be more than 0.2 (seconds) 

 

# ---------------------------------------- 

# CALIBRATION INFORMATION 

# ---------------------------------------- 

 

# Temperature 

with open(current_working_directory + 

'/AFE_calibration/temperature_calib.yaml') as file: 

    temp_calib = yaml.safe_load(file) 

    file.close() 

 

# NO2 

with open(current_working_directory + '/AFE_calibration/NO2_calib.yaml') as 

file: 

    NO2_calib = yaml.safe_load(file) 

    file.close() 

 

# SO2 

with open(current_working_directory + '/AFE_calibration/SO2_calib.yaml') as 



 
HZS 

157 

file: 

    SO2_calib = yaml.safe_load(file) 

    file.close() 

 

# OX 

with open(current_working_directory + '/AFE_calibration/OX_calib.yaml') as 

file: 

    OX_calib = yaml.safe_load(file) 

    file.close() 

 

# CO 

with open(current_working_directory + '/AFE_calibration/CO_calib.yaml') as 

file: 

    CO_calib = yaml.safe_load(file) 

    file.close() 

 

 

def getADCreading(adc_address, adc_channel): 

    """ 

    Read tension from the ADC on a certain channel 

 

    :param adc_address: slave i2c address 

    :param adc_channel: channel where to read tension 

    :return: tension between channel and ground (volts) 

    """ 

 

    attempts = 0 

 

    while attempts < 4: 

 

        try: 

            bus.write_byte(adc_address, adc_channel) 

            # print("Reading tension...                                         

", end='\r') 

            time.sleep(sleep) 

            reading = bus.read_i2c_block_data(adc_address, adc_channel, 

lange) 

            # ----------- Start conversion for the Channel Data ---------- 

            valor = ((((reading[0] & 0x3F)) << 16)) + ((reading[1] << 8)) + 

(((reading[2] & 0xE0))) 

            # add a debug function 

            # debug(print("Valor is 0x%x" % valor)) 

 

            # ----------- End of conversion of the Channel ---------- 

            volts = round(valor * vref / max_reading, 7) 

            # Rounding to 7 decimals because ADC accuracy is 3.9 microvolt 

            # print("Reading tension...", volts, "V", end='\r') 

 

            if (reading[0] & 0b11000000) == 0b11000000: 

                logger.error( 

                    "Input voltage is either open or more than " + 

str(vref) + "Volts.") 

                logger.warning("The reading may not be correct. Value read 

is " + str(volts) + " mV") 

 

            # time.sleep(sleep)  # be sure to have some time laps between 

two I2C reading/writing # i2c don't care! 

            return volts 

 

        except: 

            if attempts >= 3: 

                logger.critical("i2c transmission failed 3 consecutive 



 
AFE.py 

158 

times(" + str(sys.exc_info()) 

                                + "), skipping i2c reading") 

                return False  # indicate clearly that system has failed 

 

            logger.error("Error in the i2c transmission (" + 

str(sys.exc_info()) 

                         + "), trying again... (" + str(attempts) + "/3)") 

            attempts += 1  # increment of reading_trials 

            time.sleep(1)  # if transmission fails, wait a bit to try again 

(sensor is maybe busy) 

 

    return False 

 

 

# 

===========================================================================

========= 

 

 

reading_multiplier = 1000  # multiplication of the value given by the rpi 

 

 

def read_temp(): 

    """ 

    Measure tension of the temperature sensor 

    (Note that sensor is not located in the gas hood.) 

 

    :return: Dictionary containing tension in milli volts {'temperature 

raw'} 

    """ 

 

    volts = getADCreading(address, channel5) 

    if volts is not False: 

        tempv = round(reading_multiplier * volts, 5) 

        logger.debug("Tension from temperature sensor (AFE board) is " + 

str(tempv) + " mV") 

        time.sleep(sleep) 

 

        temp_to_return = { 

            "temperature raw": tempv, 

            "temperature": "-" 

        } 

    else: 

        logger.critical("Failed to read temperature") 

        temp_to_return = { 

            "temperature raw": "error", 

            "temperature": "error" 

        } 

 

    return temp_to_return 

 

 

def read_NO2(): 

    """ 

    Measure tension of NO2 main and auxiliary electrodes 

 

    :return: Dictionary containing tensions in milli volts {'NO2 main', 

'NO2 aux'} 

    """ 

    volts = getADCreading(address, channel8) 

    if volts is not False: 

        NO2v_main = round(reading_multiplier * volts, 5) 



 
HZS 

159 

        logger.debug("Tension from NO2 sensor (main) is " + str(NO2v_main) 

+ " mV") 

        time.sleep(sleep) 

        NO2v_aux = round(reading_multiplier * getADCreading(address, 

channel4), 5) 

        logger.debug("Tension from NO2 sensor (aux) is " + str(NO2v_aux) + 

" mV") 

        time.sleep(sleep) 

 

        NO2_to_return = { 

            "NO2 main": NO2v_main, 

            "NO2 aux": NO2v_aux, 

            "NO2 ppb": "-" 

        } 

    else: 

        logger.critical("Failed to read NO2 sensor") 

        NO2_to_return = { 

            "NO2 main": "error", 

            "NO2 aux": "error", 

            "NO2 ppb": "error" 

        } 

 

    return NO2_to_return 

 

 

def read_OX(): 

    """ 

    Measure tension of OX main and auxiliary electrodes 

 

    :return: Dictionary containing tensions in milli volts {'OX main', 'OX 

aux'} 

    """ 

    volts = getADCreading(address, channel7) 

    if volts is not False: 

        Oxv_main = round(reading_multiplier * volts, 5) 

        logger.debug("Tension from Ox sensor (main) is " + str(Oxv_main) + 

" mV") 

        time.sleep(sleep) 

        Oxv_aux = round(reading_multiplier * getADCreading(address, 

channel3), 5) 

        logger.debug("Tension from Ox sensor (aux) is " + str(Oxv_aux) + " 

mV") 

        time.sleep(sleep) 

 

        OX_to_return = { 

            "OX main": Oxv_main, 

            "OX aux": Oxv_aux, 

            "OX ppb": "-" 

        } 

 

    else: 

        logger.critical("Failed to read OX") 

        OX_to_return = { 

            "OX main": "error", 

            "OX aux": "error", 

            "OX ppb": "error" 

        } 

 

    return OX_to_return 

 

 

def read_SO2(): 



 
AFE.py 

160 

    """ 

    Measure tension of SO2 main and auxiliary electrodes 

 

    :return: Dictionary containing tensions in milli volts {'SO2 main', 

'SO2 aux'} 

    """ 

    volts = getADCreading(address, channel6) 

    if volts is not False: 

        SO2v_main = round(reading_multiplier * volts, 5) 

        logger.debug("Tension from SO2 sensor (main) is " + str(SO2v_main) 

+ " mV") 

        time.sleep(sleep) 

        SO2v_aux = round(reading_multiplier * getADCreading(address, 

channel2), 5) 

        logger.debug("Tension from SO2 sensor (aux) is " + str(SO2v_aux) + 

" mV") 

        time.sleep(sleep) 

 

        SO2_to_return = { 

            "SO2 main": SO2v_main, 

            "SO2 aux": SO2v_aux, 

            "SO2 ppb": "-" 

        } 

 

    else: 

        logger.critical("Failed to read SO2") 

 

        SO2_to_return = { 

            "SO2 main": "error", 

            "SO2 aux": "error", 

            "SO2 ppb": "error" 

        } 

 

    return SO2_to_return 

 

 

def read_CO(): 

    """ 

    Measure tension of CO main and auxiliary electrodes 

 

    :return: Dictionary containing tensions in milli volts {'CO main', 'CO 

aux'} 

    """ 

    volts = getADCreading(address, channel0) 

    if volts is not False: 

        COv_main = round(reading_multiplier * volts, 5) 

        time.sleep(sleep) 

        logger.debug("Tension from CO sensor (main) is " + str(COv_main) + 

" mV") 

        COv_aux = round(reading_multiplier * getADCreading(address, 

channel1), 5) 

        logger.debug("Tension from CO sensor (aux) is " + str(COv_aux) + " 

mV") 

        time.sleep(sleep) 

 

        CO2_to_return = { 

            "CO main": COv_main, 

            "CO aux": COv_aux, 

            "CO ppb": "-" 

        } 

    else: 

        logger.critical("Failed to read CO") 



 
HZS 

161 

 

        CO2_to_return = { 

            "CO main": "error", 

            "CO aux": "error", 

            "CO ppb": "error" 

        } 

 

    return CO2_to_return 

 

 

def calibrate_temperature(main): 

    """ 

    Apply calibration to the temperature measurement 

    :param main: electric tension from the temperature sensor 

    :return: temperature in °C 

    """ 

    temperature = ((main - temp_calib["Vkal"]) / temp_calib["Thermal 

sensitivity"]) \ 

                  + temp_calib["Tkal"] 

 

    temperature = round(temperature, 2) 

 

    return temperature 

 

 

def calibrate_NO2(main, aux): 

    """ 

    Apply calibration to the NO2 measurements 

    :param main: electrical tension from the main electrode 

    :param aux: electrical tension from the auxiliary electrode 

    :return: NO2 concentration (ppb) 

    """ 

    # Algorithm 1 

    NO2_ppb = ( 

                      ( 

 

                              (main - NO2_calib["WE0_e"]) - 

                              ( 

                                      NO2_calib["nt"] * (aux - 

NO2_calib["AE0_e"]) 

                              ) 

                      ) 

                      / NO2_calib["WE_SENS"] 

              ) + NO2_calib["C"] 

 

    NO2_ppb = round(NO2_ppb, 1) 

 

    return NO2_ppb 

 

 

def calibrate_OX(main, aux, NO2_ppb): 

    """ 

    Apply calibration to the OX measurements 

    :param main: electrical tension from the main electrode 

    :param aux: electrical tension from the auxiliary electrode 

    :param NO2_ppb: NO2 concentration from the other sensor 

    :return: OX concentration (ppb) 

    """ 

    # Algorithm 3 

    O3_ppb = ( 

                     ( 

                             (main - OX_calib["WE0_e"] - (NO2_ppb * 



 
AFE.py 

162 

OX_calib["WE_SENS_NO2"]) 

                              ) - 

                             (OX_calib["WE0_s"] - OX_calib["AE0_s"]) - 

                             ( 

                                     OX_calib["nt"] * 

                                     (aux - OX_calib["AE0_e"]) 

                             ) 

                     ) / OX_calib["WE_SENS"] 

             ) \ 

             + OX_calib["C"] 

 

    O3_ppb = round(O3_ppb, 1) 

 

    return O3_ppb 

 

 

def calibrate_SO2(main, aux): 

    """ 

    Apply calibration to the SO2 measurements 

    :param main: electrical tension from the main electrode 

    :param aux: electrical tension from the auxiliary electrode 

    :return: SO2 concentration (ppb) 

    """ 

    # Algorithm 4 

    SO2_ppb = -1 * \ 

              ( 

                      ( 

                              (main - SO2_calib["WE0_e"]) - 

SO2_calib["WE0_s"] - SO2_calib["nt"] 

                      ) 

                      / SO2_calib["WE_SENS"]) \ 

              + SO2_calib["C"] 

 

    SO2_ppb = round(SO2_ppb, 1) 

 

    return SO2_ppb 

 

 

def calibrate_CO(main, aux): 

    """ 

    Apply calibration to the CO measurements 

    :param main: electrical tension from the main electrode 

    :param aux: electrical tension from the auxiliary electrode 

    :return: CO concentration (ppb) 

    """ 

    # Algorithm 1 

    CO_ppb = ( 

                     ( 

                             (main - CO_calib["WE0_e"]) - 

                             ( 

                                     CO_calib["nt"] * 

                                     (aux - CO_calib["AE0_e"]) 

                             ) 

                     ) 

                     / CO_calib["WE_SENS"]) \ 

             + CO_calib["C"] 

 

    CO_ppb = round(CO_ppb, 1) 

 

    return CO_ppb 

 

 



 
HZS 

163 

def calibrate_all(data): 

    """ 

    Apply calibration to all available items 

    :param data: dictionary containing values to calibrate 

    :return: dictionnary with calibrated items 

    """ 

 

    if "temperature raw" in data: 

        data["temperature"] = calibrate_temperature(data["temperature 

raw"]) 

 

    if "NO2 main" in data: 

        data["NO2 ppb"] = calibrate_NO2(data["NO2 main"], data["NO2 aux"]) 

        if "OX main" in data: 

            data["OX ppb"] = calibrate_OX(data["OX main"], data["OX aux"], 

data["NO2 ppb"]) 

 

    if "SO2 main" in data: 

        data["SO2 ppb"] = calibrate_SO2(data["SO2 main"], data["SO2 aux"]) 

 

    if "CO main" in data: 

        data["CO ppb"] = calibrate_CO(data["CO main"], data["CO aux"]) 

 

    return data 

 

 

def get_data(): 

    """ 

    Get all available data from the 4-AFE Alphasense Board (one signe 

instantaneous reading) 

 

    :return: dictionary{'NO2 ppb', NO2 main', 'NO2 aux', 'OX ppb', 'OX 

main', 'OX aux', 

                'SO2 ppb', 'SO2 main', 'SO2 aux', 'CO ppb', 'CO main', 'CO 

aux', 

                'temperature', 'temperature raw'} 

    """ 

 

    data = {} 

 

    data.update(read_NO2()) 

    data.update(read_OX()) 

    data.update(read_SO2()) 

    data.update(read_CO()) 

    data.update(read_temp()) 

    data = calibrate_all(data) 

 

    return data 

 

 

def print_measurements(data): 

    """ 

    Print all measurement data on the screen 

    :param data: dictionary containing all the data 

    :return: nothing 

    """ 

    print("\t\t   ppb \t\t( main (mV), aux (mV) )") 

    print("NO2:\t\t", data["NO2 ppb"], "\t\t(", data["NO2 main"], ", ", 

data["NO2 aux"], ")") 

    print("OX:\t\t", data["OX ppb"], "\t\t(", data["OX main"], ", ", 

data["OX aux"], ")") 

    print("SO2:\t\t", data["SO2 ppb"], "\t\t(", data["SO2 main"], ", ", 



 
AFE.py 

164 

data["SO2 aux"], ")") 

    print("CO:\t\t", data["CO ppb"], "\t\t(", data["CO main"], ", ", 

data["CO aux"], ")") 

    print("Temperature:\t", data["temperature"], "\t\t(", data["temperature 

raw"], ")") 

 

    return 

 

 

def start_averaged_data(number_of_measurements, delay = 0, display=True): 

    """ 

    Perform multiple readings and makes an average 

    Run get_averaged_data() once thread is finished to get the data 

    Improved for threading application (no display prints) 

 

    :param number_of_measurements: number of measurement to average, each 

single measurement taking around 2 seconds 

    :return: Dictionary{'NO2 main', 'NO2 aux', 'OX main', 'OX aux', 

                'SO2 main', 'SO2 aux', 'CO main', 'CO aux', 

                'temperature raw'} 

    """ 

    global thread_data 

 

    thread_data = {} 

    if delay: 

        time.sleep(delay) 

 

    if display: 

        bar = IncrementalBar("Reading tensions", max=(5 * 

number_of_measurements)) 

 

    logger.debug("Starting averaged data reading") 

    NO2_main = [] 

    NO2_aux = [] 

 

    OX_main = [] 

    OX_aux = [] 

 

    SO2_main = [] 

    SO2_aux = [] 

 

    CO_main = [] 

    CO_aux = [] 

 

    temperature_main = [] 

 

    for _ in range(number_of_measurements): 

        NO2 = read_NO2() 

        if display: bar.next() 

        NO2_main += [NO2['NO2 main']] 

        NO2_aux += [NO2['NO2 aux']] 

 

    thread_data.update({"NO2 main min": min(NO2_main)}) 

    thread_data.update({"NO2 main max": max(NO2_main)}) 

    thread_data.update({"NO2 aux min": min(NO2_aux)}) 

    thread_data.update({"NO2 aux max": max(NO2_aux)}) 

 

    sum = 0 

    for i in range(len(NO2_main)): 

        sum += NO2_main[i] 

    NO2_main = sum / len(NO2_main) 

 



 
HZS 

165 

    sum = 0 

    for i in range(len(NO2_aux)): 

        sum += NO2_aux[i] 

    NO2_aux = sum / len(NO2_aux) 

 

    for _ in range(number_of_measurements): 

        OX = read_OX() 

        if display: bar.next() 

        OX_main += [OX['OX main']] 

        OX_aux += [OX['OX aux']] 

 

    thread_data.update({"OX main min": min(OX_main)}) 

    thread_data.update({"OX main max": max(OX_main)}) 

 

    thread_data.update({"OX aux min": min(OX_aux)}) 

    thread_data.update({"OX aux max": max(OX_aux)}) 

 

    sum = 0 

    for i in range(len(OX_main)): 

        sum += OX_main[i] 

    OX_main = sum / len(OX_main) 

 

    sum = 0 

    for i in range(len(OX_aux)): 

        sum += OX_aux[i] 

    OX_aux = sum / len(OX_aux) 

 

    for _ in range(number_of_measurements): 

        SO2 = read_SO2() 

        if display: bar.next() 

        SO2_main += [SO2['SO2 main']] 

        SO2_aux += [SO2['SO2 aux']] 

 

    thread_data.update({"SO2 main min": min(SO2_main)}) 

    thread_data.update({"SO2 main max": max(SO2_main)}) 

    thread_data.update({"SO2 aux min": min(SO2_aux)}) 

    thread_data.update({"SO2 aux max": max(SO2_aux)}) 

 

    sum = 0 

    for i in range(len(SO2_main)): 

        sum += SO2_main[i] 

    SO2_main = sum / len(SO2_main) 

 

    sum = 0 

    for i in range(len(SO2_aux)): 

        sum += SO2_aux[i] 

    SO2_aux = sum / len(SO2_aux) 

 

    for _ in range(number_of_measurements): 

        CO = read_CO() 

        if display: bar.next() 

        CO_main += [CO['CO main']] 

        CO_aux += [CO['CO aux']] 

 

    thread_data.update({"CO main min": min(CO_main)}) 

    thread_data.update({"CO main max": max(CO_main)}) 

    thread_data.update({"CO aux min": min(CO_aux)}) 

    thread_data.update({"CO aux max": max(CO_aux)}) 

 

    sum = 0 

    for i in range(len(CO_main)): 

        sum += CO_main[i] 



 
AFE.py 

166 

    CO_main = sum / len(CO_main) 

 

    sum = 0 

    for i in range(len(CO_aux)): 

        sum += CO_aux[i] 

    CO_aux = sum / len(CO_aux) 

 

    for _ in range(number_of_measurements): 

        temp = read_temp() 

        if display: bar.next() 

        temperature_main += [temp['temperature raw']] 

 

    thread_data.update({"temperature min": min(temperature_main)}) 

    thread_data.update({"temperature max": max(temperature_main)}) 

 

    sum = 0 

 

    for i in range(len(temperature_main)): 

        sum += temperature_main[i] 

    temperature = sum / len(temperature_main) 

 

    thread_data.update({ 

        'NO2 main': NO2_main, 

        'NO2 aux': NO2_aux, 

        'OX main': OX_main, 

        'OX aux': OX_aux, 

        'SO2 main': SO2_main, 

        'SO2 aux': SO2_aux, 

        'CO main': CO_main, 

        'CO aux': CO_aux, 

        'temperature raw': temperature 

    }) 

 

    thread_data = calibrate_all(thread_data) 

 

    logger.debug("Execute function 'get_averaged_data' to show data on 

screen") 

 

    bar.finish() 

 

    return thread_data 

 

 

def start_background_average_measurement(number_of_measurements, delay=0): 

    """ 

    Start a new thread to perform averaged reading in the background 

    Run get_averaged_data() once thread is finished to get the data 

 

    thread = threading.Thread(target=AFE.start_averaged_data, 

args=([number_of_measurements, delay]), daemon=True) 

    in your own code is preferred 

 

    :param number_of_measurements: number of measurement to average, each 

single measurement taking around 2 seconds 

    :param delay: amount of time in between the start of the thread and the 

start of the sampling operation 

    :return: nothing 

    """ 

 

    print("Starting background AFE average reading...") 

    x = threading.Thread(target=start_averaged_data, 

args=([number_of_measurements, delay]), daemon=True) 



 
HZS 

167 

    x.start() 

    logger.debug("Execute function 'get_averaged_data' to show data on 

screen") 

    return 

 

 

def get_averaged_data(): 

    """ 

    Read the data of the last start_averaged_data() (or 

start_background_average_measurement()) performed 

 

    :return: dictionary{'NO2 ppb', NO2 main', 'NO2 aux', 'OX ppb', 'OX 

main', 'OX aux', 

                'SO2 ppb', 'SO2 main', 'SO2 aux', 'CO ppb', 'CO main', 'CO 

aux', 

                'temperature', 'temperature raw'} 

    """ 

    global thread_data 

 

    print_measurements(thread_data) 

 

    return thread_data 

 

 

# open the file where the data will be stored 

if __name__ == "__main__": 

    # Execute an execution test if the script is executed from there 

    while True: 

        get_data() 

 

 



 

168 

  
GPS.py 
 
""" 

Library for the use of the U-BLOX-7 GNSS module (Velleman VMA430) 

Get the data from the UART port 

Convert the NMEA protocol and extract the useful information 

Should work with other UART GNSS devices 

""" 

 

from datetime import datetime, timezone 

 

import serial  # UART libraries, to install this library: pip3 install 

pyserial 

import time 

import yaml 

import logging 

# import RPi.GPIO as GPIO 

import sys 

import os.path 

 

# -------------------------------------------------------- 

# YAML SETTINGS 

# -------------------------------------------------------- 

 

# Get current directory 

current_working_directory = str(os.getcwd()) 

 

with open(current_working_directory + '/seacanairy_settings.yaml') as file: 

    settings = yaml.safe_load(file) 

    file.close() 

 

store_debug_messages = settings['GPS']['Store debug messages (important 

increase of logs)'] 

 

project_name = settings['Seacanairy settings']['Sampling session name'] 

 

# -------------------------------------------------------- 

# LOGGING SETTINGS 

# -------------------------------------------------------- 

# all the settings and other code for the logging 

# logging = tak a trace of some messages in a file to be reviewed afterward 

(check for errors fe) 

 

def set_logger(message_level, log_file): 

    # set up logging to file 

    logging.basicConfig(level=message_level, 

                        format='%(asctime)s %(name)-12s %(levelname)-8s 

%(message)s', 



 
HZS 

169 

                        datefmt='%d-%m %H:%M', 

                        filename=log_file, 

                        filemode='a') 

 

    logger = logging.getLogger('GPS')  # name of the logger 

    # all further logging must be called by logger.'level' and not 

logging.'level' 

    # if not, the logging will be displayed as 'ROOT' and NOT 'OPC-N3' 

    return logger 

 

 

if __name__ == '__main__':  # if you run this code directly ($ python3 

CO2.py) 

    message_level = logging.DEBUG  # show ALL the logging messages 

    # Create a file to store the log if it doesn't exist 

    log_file = current_working_directory + "/log/GPS-debugging.log" 

    if not os.path.isfile(log_file): 

        os.mknod(log_file) 

    print("GPS DEBUG messages will be shown and stored in '" + 

str(log_file) + "'") 

    logger = set_logger(message_level, log_file) 

    # define a Handler which writes INFO messages or higher to the 

sys.stderr/display 

    console = logging.StreamHandler() 

    console.setLevel(message_level) 

    # set a format which is simpler for console use 

    formatter = logging.Formatter('%(name)-12s: %(levelname)-8s 

%(message)s') 

    # tell the handler to use this format 

    console.setFormatter(formatter) 

    # add the handler to the root logger 

    logging.getLogger().addHandler(console) 

 

else:  # if this file is considered as a library (if you execute 

'seacanairy.py' for example) 

    # it will only print and store INFO messages and above in the 

corresponding log_file 

    if store_debug_messages: 

        message_level = logging.DEBUG 

    else: 

        message_level = logging.INFO 

    log_file = '/home/pi/seacanairy_project/log/' + project_name + '-

log.log'  # complete location needed on the RPI 

    # no need to add a handler, because there is already one in 

seacanairy.py 

    logger = set_logger(message_level, log_file) 

 

 

# all further logging must be called by logger.'level' and not 

logging.'level' 

# if not, the logging will be displayed as 'ROOT' and NOT 'GPS' 

 

 

# -------------------------------------------------------- 

# GPIO SETTINGS 

# -------------------------------------------------------- 

# Used during developing to synchronize the UART reading with the GPS pulse 

# spi.readall() make this sep unnecessary 

# GPIO.setmode(GPIO.BCM) 

# GPIO.setup(25, GPIO.OUT, initial=GPIO.LOW, pull_up_down=GPIO.PUD_DOWN) 

# GPIO.output(25, GPIO.LOW) 

 



 
GPS.py 

170 

 

# def pulse(): 

# GPIO.output(25, GPIO.HIGH) 

# time.sleep(.2) 

# GPIO.output(25, GPIO.LOW) 

 

 

def get_raw_reading(close_UART=True): 

    """ 

    Get raw GPS reading via UART 

    Read all the lines available on the UART port 

    :return: raw data from the GPS 

    """ 

    global ser 

    port = '/dev/ttyAMA0' 

    try: 

        # USB = '/dev/ttyACM0' 

        # PL011 = '/dev/serial0' == '/dev/ttyAMA0' 

        logger.debug("Port used for UART communication is: " + str(port)) 

        ser = serial.Serial(port=port, baudrate=9600) 

        print("Starting UART communication...", end='\r') 

        time.sleep(1) 

        ser.flush() 

        try: 

            print("Synchronizing...                          ", end='\r') 

            ser.read_all()  # delete all corrupted data 

            ser.flush()  # flush the buffer 

            time.sleep(1) 

            reading = ser.read_all() 

            if close_UART: 

                ser.close()  # avoid unnecessary port closing if second 

reading is requested 

        except: 

            logger.critical("Failed to read GPS data on UART port " + 

str(port) + " (" + str(sys.exc_info()) + ")") 

            ser.close() 

            return False  # indicate error 

    except: 

        logger.critical("Failed to initiate UART port " + str(port) + " (" 

+ str(sys.exc_info()) + ")") 

        return False  # indicate error 

 

    reading = str(reading, 'utf-8', errors='replace')  # convert the text 

sent in b'...' format into readable format... 

    # it will also skip the line where the GPS propose it (see NMEA 

protocol) 

    # 'replace' = replace the unencodable unicode to a question mark 

    logger.debug("Raw reading is:\r" + str(reading[:-1])) 

    return reading 

 

 

def lat_long_decode(raw_position, compas): 

    """ 

    Decode longitude and latitude data from NMEA into readable format 

    :param raw_position: raw longitude/latitude word 

    :param compas: compas (N/S/W/E) 

    :return: string(decoded latitude/longitude) 

    """ 

    position = raw_position.split(".") 

    min = position[0][-2:] 

    min_dec = position[1] 

    deg = position[0][0:-2] 



 
HZS 

171 

    position = deg + '°' + min + "." + min_dec + "' " + compas 

    return position 

 

 

def decode_NMEA(data): 

    """ 

    Decode the NMEA script and get the useful data 

    Only the necessary data are extracted from the frames 

    :param data: whole string returned by the GPS (all the lines of the 

NMEA) 

    :return:    Dictionary{fix time, fix date, fix date and time, latitude, 

longitude, SOG, COG, status, 

                horizontal precision, altitude, WGS84 correction, current 

time, accuracy} 

    """ 

    data = data.split("\r\n")  # create a list of lines (\r\n is sent by 

the sensor at the end of each line) 

    to_return = {} 

    visible_satellites = 0 

    for i in range(len(data)):  # don't know at which line data will be 

send, so it will search for the good line 

        print("Decode data...", end='\r') 

        # print(data[i], end='\r') 

        # time.sleep(.1)  # let a bit of time for the user to see the data 

returned by the GPS 

        # print("                                                                                          

", end='\r') 

        if data[i][0:6] == "$GPRMC": 

            if check(data[i]): 

                GPRMC = data[i].split(",") 

                fix_time = GPRMC[1][0:2] + ":" + GPRMC[1][2:4] + ":" + 

GPRMC[1][4:6] 

                date = GPRMC[9][0:2] + "-" + GPRMC[9][2:4] + "-" + 

GPRMC[9][4:6] 

                to_return.update({ 

                    "current date and time": date + " " + fix_time + " 

UTC", 

                    "current date": date, 

                    "current time": fix_time, 

                }) 

                if GPRMC[2] == "V":  # indicate that GPS is not working 

good 

                    logger.warning("GPS does not receive signal") 

                    to_return.update({ 

                        "status": "NOK", 

                        "latitude": "no fix", 

                        "longitude": "no fix", 

                        "SOG": "no fix", 

                        "COG": "no fix", 

                        "altitude": "no fix", 

                        "WGS84 correction": "no fix", 

                        "fix status": "no fix", 

                        "horizontal precision": "no fix", 

                        "accuracy": "no fix" 

                    }) 

                    return to_return 

                elif GPRMC[2] == "A":  # indicate that GPS is working fine 

                    latitude = lat_long_decode(GPRMC[3], GPRMC[4]) 

                    longitude = lat_long_decode(GPRMC[5], GPRMC[6]) 

                    SOG = GPRMC[7].replace(',', '.') 

                    COG = GPRMC[8] 

 



 
GPS.py 

172 

                    to_return.update({ 

                        "latitude": latitude, 

                        "longitude": longitude, 

                        "SOG": SOG, 

                        "COG": COG, 

                        "status": "OK" 

                    }) 

 

                else: 

                    logger.critical("Something wrong with the GPRMC data, 

GPS satus returned is: " + str(GPRMC[2])) 

 

        elif data[i][0:6] == "$GPGGA": 

            if check(data[i]): 

                GPGGA = data[i].split(",") 

                current_time = GPGGA[1][0:2] + ":" + GPGGA[1][2:4] + ":" + 

GPGGA[1][4:6] + " UTC" 

                altitude = GPGGA[9] + " m" 

                WGS84_correction = GPGGA[11] + " " + GPGGA[12] 

                position_fix_status_indicator = GPGGA[6] 

                horizontal_precision = float(GPGGA[8]) 

                accuracy = '' 

                if horizontal_precision < 2: 

                    accuracy = "very good" 

                elif 2 <= horizontal_precision < 3: 

                    accuracy = "good" 

                elif 3 <= horizontal_precision < 5: 

                    accuracy = "average" 

                elif 5 <= horizontal_precision < 6: 

                    accuracy = "poor" 

                elif horizontal_precision >= 6: 

                    accuracy = "very poor" 

                if position_fix_status_indicator == '0': 

                    fix_status = "No fix/invalid" 

                elif position_fix_status_indicator == '1': 

                    fix_status = "Standard GPS 2D/3D" 

                elif position_fix_status_indicator == '2': 

                    fix_status = "DGPS" 

                elif position_fix_status_indicator == '6': 

                    fix_status = "DR" 

                else: 

                    logger.error( 

                        "Unknown position fix status indicator in GPGGA: " 

+ str(position_fix_status_indicator)) 

                    fix_status = "Unknown: " + 

str(position_fix_status_indicator) 

 

                to_return.update({ 

                    "altitude": altitude, 

                    "WGS84 correction": WGS84_correction, 

                    "fix status": fix_status, 

                    "current time": current_time, 

                    "horizontal precision": horizontal_precision, 

                    "accuracy": accuracy 

                }) 

 

        elif data[i][0:6] == "$GPGSV": 

            visible_satellites += 1 

 

    to_return.update({ 

        "available satellites": visible_satellites 

    }) 



 
HZS 

173 

 

    return to_return 

 

 

def digest(string_line): 

    """ 

    Calculate the checksum based on the transmitted data 

    Put the whole NMEA line in the argument, function will automatically 

remove the checksum at the end 

    COPY-PASTED AND ADAPTED FROM WIKIPEDIA 

    :param NMEAstring: line of data transmitted by the GPS 

    :return: 

    """ 

    calc_cksum = 0 

    NMEAstring = string_line[1:-3] 

    for s in NMEAstring: 

        # it is XOR of each Unicode integer representation 

        calc_cksum ^= ord(s) 

 

    calc_cksum = str(hex(calc_cksum))[2:]  # get hex representation 

    calc_cksum = calc_cksum.upper()  # convert the lowercase to uppercase 

(abc to ABC) 

    # if not, Python does not recognize this string as an hexadecimal 

    return calc_cksum 

 

 

def check(NMEA_line): 

    """ 

    Check that the data transmitted are correct 

    Put the whole line in the argument, function extract the checksum at 

the end on its own 

    :param NMEA_line: one line of data transmitted by the GPS 

    :return: True (data are corrects), False (data are not corrects) 

    """ 

    calc = digest(NMEA_line) 

    checksum = NMEA_line[-2:]  # extract the checksum, the two last 

characters 

    if calc == checksum: 

        logger.debug("Checksum is correct") 

        return True 

    else: 

        logger.warning("Checksum is not correct: calculation is " + 

str(calc) + " | sensor's checksum is " + str(checksum)) 

        logger.warning("NMEA line was: " + str(NMEA_line)) 

        return False 

 

 

def get_position(): 

    """ 

    Read position data from the GPS receiver 

 

    :return:    Dictionary{fix time, fix date, fix date and time, latitude, 

longitude, SOG, COG, status, 

                horizontal precision, altitude, WGS84 correction, current 

time, accuracy, fix status} 

    """ 

    logger.debug("Get position") 

 

    global ser 

    attempts = 1 

 

    to_return = { 



 
GPS.py 

174 

        "current date and time": "", 

        "current date": "", 

        "current time": "", 

        "latitude": "error", 

        "longitude": "error", 

        "SOG": "error", 

        "COG": "error", 

        "status": "error", 

        "horizontal precision": "error", 

        "altitude": "error", 

        "WGS84 correction": "error", 

        "fix status": "error", 

        "accuracy": "error", 

        "available satellites": 0 

    }  # you must return all those items to avoid bugs in seacanairy.py (f-

e looking for an item which doesn't exist) 

 

    while attempts <= 4: 

        reading = get_raw_reading(close_UART=False) 

        if not reading:  # if it failed to read UART, it returns False 

            logger.critical("Unable to read GPS sensor, skipping reading") 

            ser.close()  # if no more reading necessary, close UART port 

            return to_return  # return a dictionary full of "error" 

        else: 

            try:  # avoid errors because of 'I don't know why the sensor 

sometimes delete items in the NMEA at random' 

                data = decode_NMEA(reading)  # decode the raw reading 

                to_return.update(data)  # update the dictionary with the 

data the function got 

                logger.debug("'to_return' is:\r" + str(to_return)) 

                # At each trial, it will update the dictionary 

            except: 

                logger.error("There were an error while decoding NMEA 

protocol (" + str(str(sys.exc_info())) + ")") 

 

            if "error" in to_return.values():  # if the dictionary contains 

an error, try again 

                attempts += 1 

                if attempts >= 4:  # if the system has tried 3 times to 

read the data but that there are still errors 

                    logger.error("Tried 3 times to get full GPS data, still 

a value 'error'") 

                    ser.close()  # if no more reading necessary, close UART 

port 

                    break  # exit the loop and print the data anyway 

                logger.warning("Data missing in GPS transmission, reading 

again (" + str(attempts) + "/3)") 

                time.sleep(.2) 

            else:  # if there are no errors, then exit the loop and proceed 

                ser.close()  # if no more reading necessary, close UART 

port 

                break 

 

    print("Current date and time:\t", to_return["current date and time"]) 

    print("Latitude:\t", to_return["latitude"], "\t|\tLongitude:\t", 

to_return["longitude"]) 

    print("Altitude:\t", to_return["altitude"], "\t\t|\tWGS84 correction:", 

to_return["WGS84 correction"]) 

    print("SOG:\t\t", to_return["SOG"], "kts", "\t\t|\tCOG:\t\t ", end='') 

    if to_return["COG"] == '': 

        print("no speed") 

    else: 



 
HZS 

175 

        print(to_return["COG"]) 

    print("Horizontal deviation:\t", to_return["horizontal precision"]) 

    print("GPS mode:\t", to_return["fix status"]) 

    print("Accuracy:\t", to_return["accuracy"], "\t\t|\tGPS status:\t", 

to_return["status"]) 

    print("Available satellites:\t", to_return["available satellites"]) 

 

    return to_return 

 

 

if __name__ == '__main__': 

    print("GPS.py is running alone") 

    while True: 

        get_position() 

        time.sleep(5) 

 

 



 

176 

  
flow.py 
 
# get the time 

import time 

from datetime import date, datetime 

 

# Get the errors 

import sys 

 

# Create folders and files 

import os 

 

# smbus2 is the new smbus, allow more than 32 bits writing/reading 

from smbus2 import SMBus, i2c_msg 

# 'SMBus' is the general driver for i2c communication 

# 'i2c_msg' allow to make i2c write followed by i2c read WITHOUT any STOP 

byte (see sensor documentation) 

 

# logging 

import logging 

 

# yaml settings 

import yaml 

 

# progress bar during sampling 

from progress.bar import IncrementalBar 

 

# take measurement while doing something else 

import threading 

 

# I²C address of the CO2 device 

air_address = 1 

O2_address = 2 

CO2_address = 3 

N2O_address = 4 

Ar_address = 5 

 

# emplacement variable 

bus = SMBus(1)  # make it easier to read/write to the sensor (bus.read or 

bus.write...) 

 

# -------------------------------------------------------- 

# YAML SETTINGS 

# -------------------------------------------------------- 

# Get current directory 

current_working_directory = str(os.getcwd()) 

 

with open(current_working_directory + '/seacanairy_settings.yaml') as file: 



 
HZS 

177 

    settings = yaml.safe_load(file) 

    file.close()  # close the file after use 

 

store_debug_messages = settings['Air flow sensor']['Store debug messages 

(important increase of logs)'] 

 

project_name = settings['Seacanairy settings']['Sampling session name'] 

 

 

# -------------------------------------------------------- 

# LOGGING SETTINGS 

# -------------------------------------------------------- 

# all the settings and other code for the logging 

# logging = tak a trace of some messages in a file to be reviewed afterward 

(check for errors fe) 

 

 

def set_logger(message_level, log_file): 

    # set up logging to file 

    logging.basicConfig(level=message_level, 

                        format='%(asctime)s %(name)-12s %(levelname)-8s 

%(message)s', 

                        datefmt='%d-%m %H:%M', 

                        filename=log_file, 

                        filemode='a') 

 

    logger = logging.getLogger('Flow meter')  # name of the logger 

    # all further logging must be called by logger.'level' and not 

logging.'level' 

    # if not, the logging will be displayed as 'ROOT' and NOT 'OPC-N3' 

    return logger 

 

 

if __name__ == '__main__':  # if you run this code directly ($ python3 

CO2.py) 

    message_level = logging.DEBUG  # show ALL the logging messages 

    # Create a file to store the log if it doesn't exist 

    log_file = current_working_directory + "/log/flow_meter-debugging.log" 

    if not os.path.isfile(log_file): 

        os.mknod(log_file) 

    print("Flow meter DEBUG messages will be shown and stored in '" + 

str(log_file) + "'") 

    logger = set_logger(message_level, log_file) 

    # The following HANDLER must be activated ONLY if you run this code 

alone 

    # Without the 'if __name__ == '__main__' condition, all the logging 

messages are displayed 3 TIMES 

    # (once for the handler in CO2.py, once for the handler in OPCN3.py, 

and once for the handler in seacanairy.py) 

 

    # define a Handler which writes INFO messages or higher to the 

sys.stderr/display (= the console) 

    console = logging.StreamHandler() 

    console.setLevel(message_level) 

    # set a format which is simpler for console use 

    formatter = logging.Formatter('%(name)-12s: %(levelname)-8s 

%(message)s') 

    # tell the handler to use this format 

    console.setFormatter(formatter) 

    # add the handler to the root logger 

    logging.getLogger().addHandler(console) 

 



 
flow.py 

178 

else:  # if this file is considered as a library (if you execute 

seacanairy.py for example) 

    # if the user asked to store all the messages in 

'seacanairy_settings.yaml' 

    if store_debug_messages: 

        message_level = logging.DEBUG 

    # if the user don't want to store everything 

    else: 

        message_level = logging.INFO 

    # Create a file to store the log if it doesn't exist yet 

    log_file = current_working_directory + "/" + project_name + "/" + 

project_name + "-log.log" 

    logger = set_logger(message_level, log_file) 

    # no need to add a handler, because there is already one in 

seacanairy.py 

 

 

# all further logging must be called by logger.'level' and not 

logging.'level' 

# if not, the logging will be displayed as ROOT and NOT 'CO2 sensor' 

 

# -------------------------------------------------------- 

 

 

def loading_bar(name, delay): 

    """ 

    Show a loading bar on the screen during a a certain amount of time 

    Make the user understand the software is doing/waiting for something 

    :param name: Text to be shown on the left of the loading bar 

    :param length: Amount of time the system is waiting in seconds 

    :return: nothing 

    """ 

    bar = IncrementalBar(name, max=(2 * delay), suffix='%(elapsed)s/' + 

str(delay) + ' seconds') 

    for i in range(2 * delay): 

        time.sleep(0.5) 

        bar.next() 

    bar.finish() 

    return 

 

 

def digest(buf): 

    """ 

    Calculate the CRC8 checksum (based on the CO2 documentation example) 

    :param buf: List[bytes to digest] 

    :return: checksum 

    """ 

    # Translation of the C++ code given in the documentation 

    crcVal = 0x00 

    _from = 0  # the first item in a list is named 0 

    _to = len(buf)  # if there are two items in the list, then len() return 

1 --> range(0, 1) = 2 loops 

 

    for i in range(_from, _to): 

        curVal = buf[i] 

 

        for j in range(0, 8):  # C++ stops when J is not < 8 --> same for 

python in range 

            if ((crcVal ^ curVal) & 0x80) != 0: 

                crcVal = (crcVal << 1) ^ 0x31 

 

            else: 



 
HZS 

179 

                crcVal = (crcVal << 1) 

 

            curVal = (curVal << 1)  # this line is in the "for j" loop, not 

in the "for i" loop 

 

    checksum = crcVal & 0xff  # keep only the 8 last bits 

 

    return checksum 

 

 

def check(checksum, data): 

    """ 

    Check that the data transmitted are correct using the data and the 

given checksum 

    :param checksum: Checksum given by the sensor (see sensor doc) 

    :param data: List[bytes to be used in the checksum calculation (see 

sensor doc)] 

    :return: True if the data are correct, False if not 

    """ 

    calculation = digest(data) 

    if calculation == checksum: 

        logger.debug("CRC8 is correct, data are valid") 

        return True 

    else: 

        logger.debug("CRC8 does not fit, data are wrong") 

        logger.error("Checksum is wrong, sensor checksum is: " + 

str(checksum) + 

                     ", seacanairy checksum is: " + str(calculation) + 

                     ", data returned by the sensor is:" + str(data)) 

        if data[0] and data[1] == 0: 

            logger.debug("Sensor returned 0 values, it is not ready, 

waiting a bit") 

            print("Sensor not ready, waiting...", end='\r') 

            time.sleep(3) 

        return False 

 

 

def check(checksum, data): 

    """ 

    Check that the data transmitted are correct using the data and the 

given checksum 

    :param checksum: Checksum given by the sensor (see sensor doc) 

    :param data: List[bytes to be used in the checksum calculation (see 

sensor doc)] 

    :return: True if the data are correct, False if not 

    """ 

    calculation = digest(data) 

    if calculation == checksum: 

        logger.debug("CRC8 is correct, data are valid") 

        return True 

    else: 

        logger.debug("CRC8 does not fit, data are wrong") 

        logger.error("Checksum is wrong, sensor checksum is: " + 

str(checksum) + 

                     ", seacanairy checksum is: " + str(calculation) + 

                     ", data returned by the sensor is:" + str(data)) 

        if data[0] and data[1] == 0: 

            logger.debug("Sensor returned 0 values, it is not ready, 

waiting a bit") 

            print("Sensor not ready, waiting...", end='\r') 

            time.sleep(3) 

        return False 



 
flow.py 

180 

 

 

def get_data(print_data=True): 

    """ 

    Get flow measurement from the Sensirion mass flow meter 4100 

    :return: dictionary {"flow [sccm]", "flow [slm]", "flow [slh]} 

    """ 

    logger.debug("Reading flow from Sensirion Mass Flow Meter Sensor") 

    if print_data: 

        print("Reading flow...", end='\r') 

 

    to_return = { 

        "flow [sccm]": "error", 

        "flow [slm]": "error", 

        "flow [slh]": "error" 

    } 

 

    attempts = 1 

 

    while attempts <= 4: 

        if attempts >= 3: 

            logger.critical("i2c transmission failed 3 consecutive times, 

skipping this flow reading") 

            return to_return 

        try: 

            answer = bus.read_i2c_block_data(air_address, 0xF1, 3) 

            logger.debug("i2c succeeded, answer is: " + str(answer)) 

            if check(answer[2], answer[0:2]): 

                break 

        except: 

            attempts += 1 

            logger.error("i2c communication failed while reading flow (" + 

str(sys.exc_info()) + ")") 

 

    if answer[0] == 255: 

        flow_sccm = 0 

        flow_slm = 0 

        flow_slh = 0 

    else: 

        flow_sccm = (answer[0] << 8) + answer[1] 

        flow_slm = flow_sccm / 1000 

        flow_slh = round(flow_slm * 60, 2) 

 

    if print_data: 

        print("                                      ", end='\r') 

        print(flow_sccm, "\tsccm [~= mL/min]") 

        print(flow_slm, "\tslm [~= L/min]") 

        print(flow_slh, "\tslh [~= L/h]") 

 

    to_return.update({ 

        "flow [sccm]": flow_sccm, 

        "flow [slm]": flow_slm, 

        "flow [slh]": flow_slh 

    }) 

 

    return to_return 

 

 

def start_averaged_measurement(sampling_period, 

number_of_measurement_during_sampling_period, delay=0): 

    global sccm 

    global slm 



 
HZS 

181 

    global slh 

    sccm = [] 

    slm = [] 

    slh = [] 

 

    time.sleep(delay) 

    sleep = sampling_period / number_of_measurement_during_sampling_period 

    for _ in range(number_of_measurement_during_sampling_period): 

        reading = get_data(print_data=False) 

        sccm.append(reading['flow [sccm]']) 

        slm.append(reading['flow [slm]']) 

        slh.append(reading['flow [slh]']) 

        time.sleep(sleep) 

 

 

def get_averaged_measurement(): 

 

    to_return = { 

        "average flow [sccm]": "error", 

        "average flow [slm]": "error", 

        "average flow [slh]": "error", 

    } 

 

    global sccm 

    global slm 

    to_return.update({"slm min": min(slm), "slm max": max(slm)}) 

    global slh 

    try: 

        sum = 0 

        for i in range(len(sccm)): 

            sum += sccm[i] 

        sccm = round(sum/len(sccm), 0) 

 

        sum = 0 

        for i in range(len(slm)): 

            sum += slm[i] 

        slm = round(sum/len(slm), 3) 

 

        sum = 0 

        for i in range(len(slh)): 

            sum += slh[i] 

        slh = round(sum/len(slh), 2) 

 

    except: 

        logger.error("Error occurred while computing average flow rate (" + 

str(sys.exc_info()) + ")") 

        return to_return 

 

    print("Average flow rate:") 

    print(sccm, "\tsccm [~= mL/min]") 

    print(slm, "\tslm [~= L/min] (min:", to_return["slm min"], "max:", 

to_return["slm max"], ")") 

    print(slh, "\tslh [~= L/h]") 

 

    to_return.update({ 

        "average flow [sccm]": sccm, 

        "average flow [slm]": slm, 

        "average flow [slh]": slh, 

    }) 

 

    return to_return 

 



 
flow.py 

182 

 

if __name__ == "__main__": 

    while True: 

        get_data() 

        time.sleep(1) 

 

 



 

183 

  
database.py 
 
import yaml 

import logging 

import sys 

import mysql.connector 

import os 

 

# -------------------------------------------------------- 

# YAML SETTINGS 

# -------------------------------------------------------- 

 

# Get current directory 

current_working_directory = str(os.getcwd()) 

 

with open(current_working_directory + '/seacanairy_settings.yaml') as file: 

    settings = yaml.safe_load(file) 

    file.close() 

 

store_debug_messages = settings['MySQL database settings']['Store debug 

messages (important increase of logs)'] 

 

project_name = settings['Seacanairy settings']['Sampling session name'] 

 

host = settings['MySQL database settings']['Host'] 

user = settings['MySQL database settings']['User'] 

password = settings['MySQL database settings']['Password'] 

db_name = settings['MySQL database settings']['Database name'] 

table_name = project_name 

 

 

# -------------------------------------------------------- 

# LOGGING SETTINGS 

# -------------------------------------------------------- 

# all the settings and other code for the logging 

# logging = tak a trace of some messages in a file to be reviewed afterward 

(check for errors fe) 

 

 

def set_logger(message_level, log_file): 

    # set up logging to file 

    logging.basicConfig(level=message_level, 

                        format='%(asctime)s %(name)-12s %(levelname)-8s 

%(message)s', 

                        datefmt='%d-%m %H:%M', 

                        filename=log_file, 

                        filemode='a') 

 



 
database.py 

184 

    logger = logging.getLogger('MySQL')  # name of the logger 

    # all further logging must be called by logger.'level' and not 

logging.'level' 

    # if not, the logging will be displayed as 'ROOT' and NOT 'OPC-N3' 

    return logger 

 

 

if __name__ == '__main__':  # if you run this code directly ($ python3 

CO2.py) 

    message_level = logging.DEBUG  # show ALL the logging messages 

    # Create a file to store the log if it doesn't exist 

    log_file = current_working_directory + "/log/mysql-debugging.log" 

    if not os.path.isfile(log_file): 

        os.mknod(log_file) 

    print("MySQL DEBUG messages will be shown and stored in '" + 

str(log_file) + "'") 

    logger = set_logger(message_level, log_file) 

    # define a Handler which writes INFO messages or higher to the 

sys.stderr/display 

    console = logging.StreamHandler() 

    console.setLevel(message_level) 

    # set a format which is simpler for console use 

    formatter = logging.Formatter('%(name)-12s: %(levelname)-8s 

%(message)s') 

    # tell the handler to use this format 

    console.setFormatter(formatter) 

    # add the handler to the root logger 

    logging.getLogger().addHandler(console) 

 

else:  # if this file is considered as a library (if you execute 

'seacanairy.py' for example) 

    # it will only print and store INFO messages and above in the 

corresponding log_file 

    if store_debug_messages: 

        message_level = logging.DEBUG 

    else: 

        message_level = logging.INFO 

    log_file = '/home/pi/seacanairy_project/log/' + project_name + '-

log.log'  # complete location needed on the RPI 

    # no need to add a handler, because there is already one in 

seacanairy.py 

    logger = set_logger(message_level, log_file) 

 

# all further logging must be called by logger.'level' and not 

logging.'level' 

# if not, the logging will be displayed as 'ROOT' and NOT 'MySQL' 

 

# --------------------------------------- 

# CODE 

# --------------------------------------- 

 

# Global variables 

global connected 

connected = False 

table_created = False 

global data_in_cache 

data_in_cache = False 

global db_line_count 

db_line_count = False 

global datafile_length 

datafile_length = False 

 



 
HZS 

185 

# Connect to the server 

 

 

print("Connecting to MySQL database...", end='\r') 

 

 

def connect(print_status=False): 

    """ 

    Check connection and connect if connection is lost 

    :param print_status: decide to show connection status or not 

    :return: True (connected) or False (Not connected) 

    """ 

    global mydb  # share variable through this code file 

    global connected 

 

    print("Checking MySQL connection status...", end='\r') 

 

    if connected:  # if connection has already been established before 

        return connected 

    else:  # if first execution, or if connection has failed last time 

        try: 

            mydb = mysql.connector.connect( 

                host=host, 

                user=user, 

                password=password, 

                database=db_name) 

            connected = mydb.is_connected() 

            if connected: 

                if print_status: 

                    logger.info("Connected to database for online data 

storage") 

                return connected 

            else: 

                if print_status: 

                    logger.warning( 

                        "No connection to database. Check internet status 

and database information in the settings") 

                return connected 

        except: 

            if print_status: 

                logger.error("Failed to connect to database (" + 

str(sys.exc_info()) + ")") 

            connected = False 

            return connected 

 

 

def create_new_table(header_list, header_type): 

    """ 

    Create a new table in the database 

    :param header_list: list of all the column headers 

    :return: 

    """ 

    global connected 

    global table_created 

    header_name = str(header_list[0]) + " " + header_type[0] 

    for i in range(1, len(header_list)): 

        header_name += ", " + header_list[i] + " " + header_type[i] 

 

    if connect(): 

        try: 

            print("Creating database table '" + str(table_name) + "'...", 

end='\r') 



 
database.py 

186 

            mycursor = mydb.cursor() 

            mycursor.execute("CREATE TABLE IF NOT EXISTS `" + 

str(table_name) + "` (" + header_name + ")") 

            logger.info("Table (already) created (" + str(table_name) + 

")") 

            table_created = True 

            return True 

        except: 

            logger.error("Failed to create new table in the database (" + 

str(sys.exc_info()) + ")") 

            connected = False 

            return False 

 

 

def number_of_lines_in_db(): 

    """ 

    Count the number of lines in the current table 

    :return: number of lines 

    """ 

    global connected 

    try: 

        mycursor = mydb.cursor() 

        mycursor.execute("SELECT COUNT(*) FROM `" + str(table_name) + "`") 

        result = mycursor.fetchone() 

        print("There is already", result[0], "lines in db") 

        return result[0] 

    except: 

        connected = False 

        logger.error("Failed to count the number of lines in the database 

(" + str(sys.exc_info()) + ")") 

        return 0 

 

 

def upload_data(header_list, list_of_lines): 

    """ 

    Append data to the table in the database 

    :param header_list: List of the headers in which to write some data 

    :param data: List containing the data to fill in those headers, in good 

order 

    :return: True or False (success or failure) 

    """ 

    global db_line_count 

    # Convert header list in string 

    # Necessary to create the MySQL function 

    header_name = str(header_list[0]) 

    for i in range(1, len(header_list)): 

        header_name += ", " + str(header_list[i]) 

 

    header_name = header_name.replace('"', '')  # no guillemet for header 

creation (see MySQL theory) 

 

    # print("Header name is:", header_name) 

    # print("Len header is:", len(header_list)) 

    # print("len of lines to send is:", len(list_of_lines)) 

 

    for i in range(len(list_of_lines)): 

        # Create data string from list 

        to_write = [] 

        for j in list_of_lines[i]: 

            if isinstance(j, list): 

                to_write += j 

            else: 



 
HZS 

187 

                to_write += [j] 

 

        to_upload = '"' + to_write[0] + '"'  # the first one will always be 

the datetime, requires guillemets 

 

        for j in range(1, len(to_write)): 

            if to_write[j] == '-' or to_write[j] == 'error' or to_write[j] 

== '-\n' or to_write[j] == 'error\n' or \ 

                    to_write[j] == 'no fix': 

                to_upload += ',NULL' 

            else: 

                try: 

                    to_upload += ',' + str(float(to_write[j].replace('\n', 

''))) 

                except: 

                    to_upload += ', "' + str(to_write[j]).replace('\n', '') 

+ '"' 

 

        # print("To upload is:", to_upload) 

        # print("Len to_upload is:", len(data)) 

        sql = "-" 

        print("Sending", str(i) + '/' + str(len(list_of_lines)), " lines to 

MySQL database...", end='\r') 

 

        if "0x00" in to_upload:  # if line in file is corrupted, skip this 

line and go ahead 

            try: 

                sql = "INSERT INTO `" + str(table_name) + "`" 

                mycursor = mydb.cursor() 

                mycursor.execute(sql) 

                mydb.commit() 

                db_line_count += 1  # one line sent, database is now one 

line bigger 

            except: 

                pass 

            continue 

        try: 

            # print("INSERT INTO `" + str(table_name) + "` (" + header_name 

+ ") VALUES (" + str(to_upload) + ")") 

            mycursor = mydb.cursor() 

            sql = "INSERT INTO `" + str(table_name) + "` (" + header_name + 

") VALUES (" + str( 

                to_upload) + ")" 

            mycursor.execute(sql) 

            mydb.commit() 

            db_line_count += 1  # one line sent, database is now one line 

bigger 

        except: 

            logger.error("Failed to save data into the database (" + 

str(sys.exc_info()) + "; line was: ", str(sql), 

                         ")") 

            sql = "INSERT INTO `" + str(table_name) + "`" 

            mycursor = mydb.cursor() 

            mycursor.execute(sql) 

            mydb.commit() 

            db_line_count += 1  # one line sent, database is now one line 

bigger 

    print("                                                                            

", end='\r') 

    print(len(list_of_lines), "line(s) uploaded on the database") 

 

 



 
database.py 

188 

def csv_file_length(): 

    """ 

    Get data file length 

    :return: data file length 

    """ 

    global datafile_length 

    file = open(current_working_directory + "/" + str(project_name) + "/" + 

str(project_name) + "-data.csv", 'r') 

    datafile_length = 0 

    for line in file: 

        if line != "\n": 

            datafile_length += 1 

    file.close() 

    del file  # remove from memory 

    return datafile_length - 1  # minus 1 for the column header line 

 

 

def update(header_list, header_type, data_to_add): 

    """ 

    Upload data on the database if possible 

    :return: 

    """ 

    global table_created 

    global db_line_count 

    global datafile_length 

    global connected 

 

    if not datafile_length: 

        datafile_length = csv_file_length() 

    # print("file length is:", datafile_length) 

 

    if connect():  # check connection, and go ahead if ok 

        if not table_created: 

            try: 

                table_created = create_new_table(header_list, header_type) 

            except: 

                print("Impossible to create table (" + str(sys.exc_info()) 

+ ")") 

                connected = False 

                return  # impossible to store data if table doesn't exist 

        if not db_line_count: 

            db_line_count = number_of_lines_in_db() 

        # print("db length is:", db_line_count) 

 

        for i in range(1, len(data_to_add)): 

            if type(data_to_add[i]) == str: 

                # in case of any sensor error, it return either "-" or 

"error" 

                # a float value could become a string, leading to database 

failure 

                data_to_add[i].replace('-', 'NULL').replace('error', 

'NULL').replace('no fix', 'NULL') 

                # in MySQL, NULL means 'empty' 

 

        if db_line_count == datafile_length:  # if the same amount of data 

in the db and in the csv file 

            upload_data(header_list, [data_to_add])  # send only the newest 

data 

 

        else: 

            logger.info("Sending pending data to MySQL database") 

            to_upload = [] 



 
HZS 

189 

            csv_file = open( 

                current_working_directory + "/" + str(project_name) + "/" + 

str(project_name) + "-data.csv", 'r') 

            csv_lines = csv_file.readlines()  # load all the lines in the 

memory 

            csv_file.close() 

            for x in range(db_line_count + 1, datafile_length + 1): 

                to_upload += [csv_lines[x].split(',')] 

                # for i in range(1, len(csv_lines)): 

                #     if type(data_to_add[i]) == str: 

                #         csv_lines[i].replace('-', 

'NULL').replace('error', 'NULL') 

            to_upload += [data_to_add] 

            upload_data(header_list, to_upload) 

            del csv_lines  # remove this huge variable from RAM 

            del csv_file 

 

    else: 

        return 

 

    datafile_length += 1 

    # if this function is executed, it means that new data have been taken 

    # therefore, we know the data file will have one line more 

    # this way, we avoid loading each time the csv file 

    # same increment after every database upload 

 



 

190 

  
seacanairy_settings.yaml 
 
  # SEACANAIRY CONFIGURATION FILE 

 

# Recommendations 

  # do not change the file syntax 

  # settings must either be Yes or No 

  # numbers must be integer (without decimals) 

  # After changing any settings, check that the Software still work 

 

Seacanairy settings: 

  # Name of the folder and database table in which the log and data files 

will be stored: 

  # WARNING: 

  Sampling session name: "essai-17-08-bis" 

  # Amount of time between each consecutive measurement 

  Sampling period: 60  # seconds 

  Activate M&C air pump: Yes 

  Air pump minimum running time: 5  # seconds per loop 

 

 

MySQL database settings: 

  Activate database upload: Yes 

  Store debug messages (important increase of logs): No 

  Host: "remotemysql.com" 

  User: "4tgGwNUHei" 

  Password: "iz3EKsfjBU" 

  Database name: "4tgGwNUHei" 

 

 

CO2 sensor: 

  Activate this sensor: Yes 

  Automatic sampling frequency (number of sample during the above sampling 

period): 1 

  Amount of time required for the sensor to take the measurement: 5  # 

seconds (default value: 10 seconds) 

  Store debug messages (important increase of logs): No 

  Number of reading attempts: 6  # default value: 6 

 

 

OPC-N3 sensor: 

  Activate this sensor: Yes 

  # Amount of time at which the fan keep running to refresh the air inside 

the sensor casing 

  Flushing time: 0 

  # Amount of time at which the laser is kept on and measure the air 

  # This period will be multiplied by 2 in practice because the sensor 

automatically take a 



 
HZS 

191 

  # first measurement in high gain and then another one in low gain mode 

  Sampling time: 4 

  Fan speed: 100 # 0 = the slowest, 100 = the fastest 

  # In case of data transmission error, take another sample (Yes) or 

  # read the data again even if sampling time is really short (No) 

  Take a new measurement if checksum is wrong (avoid shorter sampling 

periods when errors): Yes 

  Store debug messages (important increase of logs): No 

 

 

Air flow sensor: 

  Activate this sensor: Yes 

  Store debug messages (important increase of logs): No 

 

 

GPS: 

  Activate this sensor: Yes 

  Store debug messages (important increase of logs): No 

 

 

AFE Board: 

  Activate this sensor: Yes 

  Store debug messages (important increase of logs): No 

  # Perform multiple readings and average them to reduce noise 

  Absorption time between air pump stop and reading: 2 

  Noise reduction - number of reading averaged: 4 

  # Reading occurs after minimum running time 

 



 

192 

  
AFE calibration 

Files are similar for other gas sensors (SO2; NO2, CO, OX, and temperature). 

 
  # ALPHASENSE 4-AFE CALIBRATION FILE 

  # CO 

 

Calibration information: 

  Name: "Lukas" 

  Version number: "1.0" 

 

# Algorithm no.1 

WE_SENS: 0.2776 

WE0_e: 305.5 

AE0_e: 301 

WE0_s: -28.24 

AE0_s: 25.76 

WE0: 277.26 

AE0: 326.76 

 

nt: -0.9 

C: 0  # maybe an error there, confusion between excel file and paper 

formula 



 

193 

  
set_system_time.sh 
 
#!/bin/sh 

 

printf "Check the system time: " 

date 

printf "Is the current date and time correct? [Y/n] " ; read -r  answer 

if [ $answer == "Y" ] ; 

then 

  printf "Exiting time setting" 

  sleep 1 

  exit 

fi 

if [ $answer == "n" ] ; 

then 

  printf "RTC time is: " 

  sudo hwclock -r 

  printf "Is that time correct? [Y/n] " ; read -r answer 

fi 

if [ $answer == "Y" ] ; 

then 

  printf "Applying RTC time to the system" 

  sudo hwclock -s 

  printf "\nSystem time is now " 

  date 

  printf "Exiting this shell script\n" 

  sleep 1 

  exit 

fi 

if [ $answer == "n" ] ; 

then 

  printf "Is the computer connected to the internet? [Y/n] " ; read -r  

answer 

  if [ $answer == "Y" ] ; 

  then 

    printf "Let some time to the system to get time from the internet" 

    printf "\nShell script will close\nExecute this script again in one 

minute\n" 

    sleep 5 

    exit 

  fi 

  if [ $answer == "n" ] ; 

  then 

    printf "Type hereafter the date in the following format: YYYY-MM-DD 

(2001-09-11): " ; read -r date_input 

    sudo date +%F -s "$date_input" 



 
set_system_time.sh 

194 

    printf "Type now the current time in the following format: hh:mm:ss 

(12:30:55): " ; read -r time_input 

    sudo date +%T -s "$time_input" 

    printf "Date and Time are now: " 

    date 

    printf "\nWriting current time inside RTC..." 

    sudo hwclock -w 

    printf "Exiting this shell script\n" 

  sleep 1 

  exit 

  fi 

fi 

exit 

 

 



 

195 

  
Graph from the measuring 
device 

Several samplings has been achieved using the Seacanairy in its final stage. Following 

graphs comes from one of those sampling sessions. 

1 Temperature 

 
Figure 78 Graph of the temperature measured in a garden in the countryside 

Source: own work, using the Seacanairy 

0

5

10

15

20

25

30

35

40

45

12:00:00 12:30:00 13:00:00 13:30:00 14:00:00 14:30:00

Temperature measured in a garden in the countryside 
(Bousval, Belgium) on the 21th August 2021

Temperature_OPC

temperature_C

Temperature



 
Graph from the measuring device 

196 

2 Particulate matter 

 
Figure 79 Graph of particulate matter sampled in a garden in the countryside 

Source: own work, using the Seacanairy 

-5

0

5

10

15

20

25

30

35

40

12:00:00 12:30:00 13:00:00 13:30:00 14:00:00 14:30:00

Particulate Matter sampled in a garden in the countryside 
(Bousval, Belgium) on the 21th August 2021

PM_1

PM_2_5

PM_10

sample_flow_rate_OPC



 
HZS 

197 

3 Gas sensors 

 
Figure 80 Graph of gas concentration in a garden in the countryside 

Source: own work, using the Seacanairy 

-300

-200

-100

0

100

200

300

400

500

12:00:00 12:30:00 13:00:00 13:30:00 14:00:00 14:30:00

Gas concentration measurements in a garden in the 
countryside (Bousval, Belgium) on the 21th August 202

NO2_ppb

OX_ppb

SO2_ppb

CO2_ppb

CO2_average



 
Graph from the measuring device 

198 

4 Air flow 

 
Figure 81 Graph of the flow rate measurement of the Seacanairy while sampling in a garden in the countryside 

Source: own work, using the Seacanairy 

0

1

2

3

4

5

6

7

8

9

12:00:00 12:30:00 13:00:00 13:30:00 14:00:00 14:30:00

Flow rate measurement of the Seacanairy while sampling in a 
garden in the countryside (Bousval, Belgium) on the 21th 

August 2021

sample_flow_rate_OPC

flow_slm



 
HZS 

199 

5 SO2 peak when a nearby lawn tractor passes  

The carbon oxides peak is generated by the passage of a lawn tractor nearby. 

 
Figure 82 Graph of gas concentration measurements on a terrace in the countryside 

Source: own work, using the Seacanairy 

 

-400

-300

-200

-100

0

100

200

300

400

500

14:00:00 14:30:00 15:00:00 15:30:00 16:00:00 16:30:00 17:00:00

Gas concentration measurements on a terrace 
in the countryside (Bousval, Belgium) on the 

21th August 2021

NO2_ppb

OX_ppb

SO2_ppb

CO2_ppb

CO2_average



 

200 

Bibliography 
[1]  Alchemy Power Inc. (2020) ‘Pi-16ADC for Raspberry PiTM’. https://www.alchemy-

power.com/wp-content/uploads/2020/02/16ADC20200203-1-DS.pdf 

[2]  Alphasense Ltd (2019) ‘Alphasense User Manual OPC-N3 Optical Particle Counter’. 

[3]  Alphasense Ltd and Mark Giles (2019) ‘Supplemental SPI information for the OPC-
N3’. 

[4]  Cburnett (2006) English:  A single master and three slaves on a Serial Peripheral Interface 
(SPI) bus. https://commons.wikimedia.org/wiki/File:SPI_three_slaves.svg (Accessed 17 
May 2021). 

[5]  ‘Different Types Of Cable Lugs With PDF File’ (2019) Engineering Discoveries. 
https://engineeringdiscoveries.com/different-types-of-cable-lugs-with-pdf-file/ (Accessed 
19 August 2021). 

[6]  Dinh, T.-V., Choi, I.-Y., Son, Y.-S. and Kim, J.-C. (2016) ‘A review on non-dispersive 
infrared gas sensors: Improvement of sensor detection limit and interference 
correction’. Sensors and Actuators B: Chemical, 231, pp. 529–538. 
doi:10.1016/j.snb.2016.03.040 

[7]  Dowker, K. P. and Hardwick, K. (2008) ‘Effect of tubing type on gas detector  sampling 
systems (RR635)’. https://www.hse.gov.uk/research/rrpdf/rr635.pdf 

[8]  E+E Elektronik (2020) ‘Utilising the E2 Interface on EE894’. 
https://downloads.epluse.com/fileadmin/data/product/ee894/Utilising_E2_Interface
_EE894_AN1808-1.pdf 

[9]  E+E Elektronik Ges.m.b.H. (n.d.) ‘CO2 Module EE894 Protocol Description I2C’. 
https://downloads.epluse.com/fileadmin/data/product/ee894/TUG_EE894_I2C.pdf 

[10]  ‘EE894 - CO2 Module Measures Four Climate Parameters’ (n.d.) 
https://www.epluse.com/en/products/co2-measurement/co2-sensor/ee894/ 

[11]  ‘EE894 datasheet’ (n.d.) 
https://downloads.epluse.com/fileadmin/data/product/ee894/datasheet_EE894.pdf 

[12]  ‘FEP (fluorinated ethylene propylene) - Polyfluor’ (n.d.) 
https://www.polyfluor.nl/en/materials/fep/ (Accessed 1 May 2021). 

[13]  Haider, A., Robert, M. and Schwarz, R. (n.d.) ‘Specification E2 Interface’. 
http://downloads.epluse.com/fileadmin/data/sw/Specification_E2_Interface.pdf 



 
HZS 

201 

[14]  Hinds, W. C. (1999) Aerosol Technology: Properties, Behavior, and Measurement of Airborne 
Particles. John Wiley & Sons. 

[15]  ‘I2C’ (2021) Wikipedia. 
https://en.wikipedia.org/w/index.php?title=I%C2%B2C&oldid=1019929433 
(Accessed 22 May 2021). 

[16]  ‘Installing packages using pip and virtual environments — Python Packaging User 
Guide’ (n.d.) https://packaging.python.org/guides/installing-using-pip-and-virtual-
environments/ (Accessed 9 May 2021). 

[17]  ‘JavaScript Object Notation’ (2021) Wikipédia. 
https://fr.wikipedia.org/w/index.php?title=JavaScript_Object_Notation&oldid=17963
7222 (Accessed 13 May 2021). 

[18]  Lindegaard, K.-P. (n.d.) ‘smbus2 0.4.1 Documentation’. 
https://github.com/kplindegaard/smbus2 (Accessed 15 May 2021). 

[19]  MATT (2018) ‘Introducing the Raspberry Pi 3 B+ Single Board Computer’. Raspberry Pi 
Spy. https://www.raspberrypi-spy.co.uk/2018/03/introducing-raspberry-pi-3-b-plus-
computer/ (Accessed 10 May 2021). 

[20]  M&C TechGroup Germany GmbH (n.d.) ‘Instruction manual - Bellows pump series 
MP®-F’. https://www.mc-techgroup.com/manuals/M_MPF_EN.pdf 

[21]  MOCQ, F. (2017) ‘Le port série du Raspberry Pi 3 : pas simple !’ Framboise 314, le 
Raspberry Pi à la sauce française.... https://www.framboise314.fr/le-port-serie-du-
raspberry-pi-3-pas-simple/ (Accessed 25 May 2021). 

[22]  MOCQ, F. (2019) ‘Utiliser le port série du Raspberry Pi 3 et du Pi Zero’. Framboise 314, 
le Raspberry Pi à la sauce française.... https://www.framboise314.fr/utiliser-le-port-serie-
du-raspberry-pi-3-et-du-pi-zero/ (Accessed 25 May 2021). 

[23]  ‘OPC-N3 Particle Monitor’ (n.d.) https://www.alphasense.com/WEB1213/wp-
content/uploads/2019/03/OPC-N3.pdf 

[24]  ‘Particulates | Alphasense’ (2015) Alphasense | The Sensor Technology Company. 
https://www.alphasense.com/index.php/products/optical-particle-counter/ (Accessed 
17 April 2021). 

[25]  ‘Peli Storm iM2720 Case Call 01902 324734 For Best Prices’ (n.d.) 
https://www.waterproof-cases.co.uk/product/peli-storm-im2720-case/ (Accessed 21 
August 2021). 

[26]  Pol Cuvelier (2021) ‘Evening spent searching for a solution concerning the OPC-N3 
and the electric pump’. 

[27]  ‘PTFE (polytetrafluoroethylene) - Polyfluor’ (n.d.) 
https://www.polyfluor.nl/html/index.php?page_id=86&language_id=2 (Accessed 1 
May 2021). 



 
Bibliography 

202 

[28]  ‘Raspberry Pi UART Communication using Python and C | Raspberry Pi’ (n.d.) 
https://www.electronicwings.com/raspberry-pi/raspberry-pi-uart-communication-using-
python-and-c (Accessed 25 May 2021). 

[29]  Saint-Gobain (n.d.) ‘Tygon products for electronics purpose’. 
https://www.processsystems.saint-gobain.com/products/electronics (Accessed 10 May 
2021). 

[30]  Shugar, G. J., Ballinger, J. T. and Dawkins, L. M. (1996) Chemical technicians’ ready 
reference handbook 4th ed. New York: McGraw-Hill. 

[31]  ‘SMBus Protocol - kernel.org’ (n.d.) The Linux Kernel Archives. 
https://www.kernel.org/doc/Documentation/i2c/smbus-protocol (Accessed 15 May 
2021). 

[32]  Sousan, S., Koehler, K., Hallett, L. and Peters, T. M. (2016) ‘Evaluation of the 
Alphasense Optical Particle Counter (OPC-N2) and the Grimm Portable Aerosol 
Spectrometer (PAS-1.108)’. Aerosol science and technology : the journal of the American 
Association for Aerosol Research, 50(12), pp. 1352–1365. 
doi:10.1080/02786826.2016.1232859 

[33]  ‘Technical User Guide - Protocol Description I2C’ (n.d.) 
https://downloads.epluse.com/fileadmin/data/product/ee894/TUG_EE894_I2C.pdf 

[34]  Thoms, V. (n.d.) spidev: Python bindings for Linux SPI access through spidev. Python 
http://github.com/doceme/py-spidev (Accessed 23 May 2021). 

[35]  ‘UART configuration - Raspberry Pi Documentation’ (n.d.) 
https://www.raspberrypi.org/documentation/configuration/uart.md (Accessed 8 April 
2021). 

[36]  ‘Updating and upgrading Raspberry Pi OS - Raspberry Pi Documentation’ (n.d.) 
https://www.raspberrypi.org/documentation/raspbian/updating.md (Accessed 9 May 
2021). 

[37]  Van der Borght, L. (2020) ‘Constructie en kalibratie van een toestel voor het meten van 
de luchtkwaliteit aan boord van zeeschepen’. Antwerp Maritime Academy. 

 


	Foreword
	Abstract
	Résumé
	Table of content
	Table of figures
	Table of tables
	List of abbreviations
	Introduction
	Chapter 1  The Sensors of the Seacanairy
	1 E+E Elektronik EE894 CO2 sensor
	1.1 Sensor communication and wiring
	1.2 Compatible wire and sockets
	1.3 Software function list
	1.4 Software schematic
	1.4.1 General procedure for reading measurements
	1.4.2 Procedure for reading and writing bytes inside the sensor custom memory

	1.5 Air measurement and data reading timing
	1.6 Faced issues during the development
	1.6.1 Consecutive I²C write and read
	1.6.2 Addition of other I²C devices to the central computer
	1.6.3 inability to manually trigger a measurement
	1.6.4 Continuous indication of temperature error on the status byte
	1.6.5 Checksum error during measurement readings


	2 OPC-N3 particulate matter sensor
	2.1 Data returned by the sensor
	2.2 Sensor communication and wiring
	2.3 Software function list
	2.4 Software schematic
	2.4.1 SPI communication initiation
	2.4.2 Histogram reading
	2.4.3 Perform a particulate matter measurement

	2.5 Faced issues
	2.5.1 Simultaneous reading and writing of data
	2.5.2 Sensor Slave Select line wiring
	2.5.3 Frequency conflict between the OPC-N3 SPI and the GPS UART

	2.6 Interference between M&C air pump and SPI communication
	2.6.1 Isolation of the pump from the 220V line via a noise reducer
	2.6.2 Increasing the power supply capacity
	2.6.3 Addition of a rest period between starting the pump and the first communication with the sensor


	3 The 4-AFE gas sensors board from Alphasense
	3.1 Wiring of the 4-AFE board and the Analog to Digital Converter (ADC)
	3.2 Software function list
	3.3 Analogic signal noise reduction
	3.4 Calibration

	4 The GPS receiver
	4.1 Wiring of the GPS receiver
	4.2 Software function list
	4.3 Faced issues
	4.3.1 Frequency conflict between the OPC-N3 SPI and the GPS UART
	4.3.2 Random UART port opening problem


	5 Sensirion Mass Flow Meter
	6 The RTC (real-time clock) – DS3231
	6.1 Faced issues
	6.1.1 I2C pull-up resistors
	6.1.2 Integration on the PCB


	Chapter 2  Combining components into a measuring device
	1 Building the device into a transportable suitcase
	1.1 Three aluminium plates in the casing
	1.2 The bottom plate
	1.3 The cover plate in the case lid
	1.4 The top plate
	1.5 Drilling the plate to fix it on the frame

	2 Connecting all sensors with tubes
	2.1.1 The use of PTFE tubes
	2.1.2 Air pump
	2.1.3 The particulate matter sensor (OPC-N3) box
	2.1.4 The CO2 sensor box
	2.1.5 The Sensirion mass flow meter
	2.1.6 The Alphasense 4-AFE gas sensor
	2.2 The electrical connection of all hardware components
	2.2.1 Electric noise on the 220V line


	3 Central computer
	3.1 The Raspberry Pi
	3.2 The Analog to Digital Converter
	3.3 Printed Circuit Board (PCB)
	3.3.1 General procedure for designing a PCB
	3.3.2 Seacanairy wiring
	3.3.3 The connection between the Analog to Digital Converter (ADC) and the custom circuit board
	3.3.4 Tips for a successful printed circuit


	Chapter 3  Setting up the development environment on a stand-alone computer
	1 Set up the development environment on a personal computer
	1.1 Development software – PyCharm
	1.2 New project creation
	1.3 Git repository and GitHub account
	1.4 Commit and Push files to GitHub
	1.5 Libraries installation
	1.6 Connect to the Raspberry Pi using TeamViewer
	1.7 Transfer files from or to the Raspberry Pi

	2 Set up the development environment on the Seacanairy central computer
	2.1 Update the Raspberry Pi
	2.2 The virtual environment on the Raspberry Pi
	2.2.1 Create a Virtual Environment
	2.2.2 Virtual environment activation
	2.2.3 Activate the virtual environment in Thonny Python IDE

	2.3 Install Python libraries on the Raspberry Pi
	2.4 Testing code on the Raspberry Pi
	2.4.1 Copy-pasting in Thonny Python IDE
	2.4.2 TeamViewer File Transfer and python3 in console


	3 Console tip and tricks
	4 Raspberry Pi password
	Chapter 4  Software of the Seacanairy
	1 Overall Seacanairy software structure
	2 Information display and logging functions
	3 Settings page
	3.1 Choice of file format
	3.2 Available settings

	4 MySQL Database
	5 Global Seacanairy script
	5.1 Manual operation through the touchscreen
	5.2 Autostart at boot

	6 Software files and folders
	6.1 List of files

	Conclusion
	Annexe 1  List of files
	Annexe 2  Case panels dimensions
	Annexe 3  Schematic of the Seacanairy wiring
	Annexe 4  Seacanairy PCB
	Annexe 5  CO2.py
	Annexe 6  OPCN3.py
	Annexe 7  AFE.py
	Annexe 8  GPS.py
	Annexe 9  flow.py
	Annexe 10  database.py
	Annexe 11  seacanairy_settings.yaml
	Annexe 12  AFE calibration
	Annexe 13  set_system_time.sh
	Annexe 14  Graph from the measuring device
	1 Temperature
	2 Particulate matter
	3 Gas sensors
	4 Air flow
	5 SO2 peak when a nearby lawn tractor passes
	Bibliography

