-Q'=

Antwerp Maritime Academy

HOGERE ZEEVAARTSCHOOL ANTWERPEN

Designing a portable and autonomous

air pollution measuring instrument
Cyril Dewez

Master thesis for the obtention of Promotor: Joeri Horvath
the title of Co-promotor: Olivier Schalm

Master in Nautical Sciences Academic year: 2020-2021

Foreword

This Master's thesis is one of the conditions for obtaining the Master's degree in Nautical

Sciences at the Antwerp Maritime Academy.

Since the start of these studies, I have wished to study air pollution onboard merchant
navy ships during my Bachelor and Master’s thesis. Mr Joeri Horvath and Mr Olivier Schalm
allowed me to create my own air pollution measuring instrument for that purpose. I started
working on this project without any specific prior knowledge. As the design progressed, I learned
to code in Python, studied sensor communications protocols, connected all the sensors
individually with a breadboard, traced electronic schematics, drew my own printed circuit board

with KiCad, solder connectors, designed flowcharts with draw.io, made 220V connections...

[warmly thank Mr Olivier Schalm for the opportunity to organise a trip to Cuba in this
context which has been cancelled at the last minute due to the Coronavirus pandemic. I would
also like to thank Mr Gustavo Carro for his help setting up my development environment. I also
thank my father, Luc, for the many tips and invaluable assistance during the construction of the
Seacanairy case. Finally, I would like to thank the Antwerp Maritime Academy for funding the

project.

VERSION 2.0

Abstract

This thesis proposes the design of an instrument that measures air quality onboard
merchant marine vessels. The device must fulfil the following boundary conditions: (1) be able
to measure sulphur oxides, nitrogen oxides, carbon oxides, ozone, particulate matter,
temperature and humidity, (2) the air supply to the sensors must go through the tubing and a
pump to facilitate calibration in a later stage, (3) the instrument must be (water)tight, and (4) the

instrument must be transportable.

The realization of the measuring device begins with an individual study of potential
sensors. After the selection of the necessary sensors, the electronic connections have been
studied, the required connectors were purchased, and the software to operate and collect data
through a central computer written. Writing and installing the software on the central computer
requires creating a development environment on an additional stand-alone computer. This step
is studied for each sensor on a case-by-case basis. Finally, a dedicated software program
synchronizes and groups the data in a shared database when all the sensors are operational.
Continuously, upgrades were made, including a printed circuit board that simplifies the electric

cables.

Finally, all the components of the measuring device are installed in a watertight Pelican
Storm Case to form a single transportable unit. The suitcase is fitted with three aluminium

plates, on which selected components are attached (e.g., pump, pipes, transformer, central unit,

USB socket).

During the building process of the portable and watertight measuring device, several
problems have been encountered: it is hard to find the correct component in the vast amount
of possibilities on the market, the selected components are not always compatible with each
other, the documentation of sensors is not always clear, errors can quickly occur with software
and wires. This dissertation provides lists of components, wiring schematics, software flowcharts,

and Python code examples that can be reproduced when someone wants to build a similar device.

iii

Résumé

Ce mémoire propose la conception d’un instrument permettant la mesure de la qualité
de I'air a bord des navires de la marine marchande. L’appareil se doit de répondre aux exigences
suivantes : (1) étre capable de mesurer les oxydes de soufre, les oxydes d’azote, les oxydes de
carbone, I'ozone, les particules fines, la température et 'humidité, (2) I'arrivée d’air aux capteurs
doit se faire via un systéme de tubes et d’'une pompe de maniére a faciliter la calibration dans le

futur, (3) I'instrument doit étre étanche (a 'eau), et (4) le tout doit étre transportable.

La réalisation de I'instrument de mesure débute par une étude individuelle des capteurs.
Apres la sélection des senseurs nécessaires, les connections électriques sont étudiées, les
connecteurs nécessaires achetés, et 'on écrit le logiciel concu pour opérer et récupérer les
données par le biais d’'un ordinateur central. La rédaction et l'installation du logiciel sur
I'ordinateur central nécessite la création d’'un environnement de développement sur un
ordinateur de bureau additionnel. Cela est étudi¢ au cas-par-cas pour chaque capteur.
Finalement, lorsque tous les capteurs sont opérationnels, un logiciel synchronise et regroupe les
données dans une base de données commune. Au fur et 4 mesure de la conception, le systéeme

est amélioré, tel que la création d’un circuit imprimé pour remplacer tous les cables électriques.

Finalement, tous les composants de 'instrument de mesure sont installés dans un Pelican
Storm Case (valise) afin de former une seule unité transportable. La valise est composée de trois
plaques en aluminium sur lesquels les composants sont fixés (par exemple, la pompe, les

transformateurs, 'ordinateur central, une prise USB).

Tout au long de la conception de I'instrument de mesure, plusieurs probléemes ont été
rencontrés : il est difficile de trouver les bons composants parmi les nombreuses possibilités sur
le marché, les pieces sélectionnées ne sont pas toujours compatibles les unes avec les autres, et
des erreurs peuvent rapidement survenir dans le logiciel et les cablages. Cette dissertation fournit
des listes de composants, des schémas électriques, des algorithmes de logiciels, et des exemples

de code Python, permettant & quiconque de construire un instrument de mesure similaire.

Table of content

FOTEWOTA 1.ttt ettt et s et s b e st s ansesaesassesaasasaesansesasensesens i
AADSTTACE 11ttt ettt ettt et essassansans iii
RESUME ...ttt ettt ettt ettt et e bt ssse e aaessaessaaessaessnes v
Table Of CONMEENT...cuviiviiiieiieteett ettt ettt et rb e ve et e ese e st e essesseersessesseseessassesseseesseessanss vii
TaAble Of fIGUTES c.vvivvierieiiericieert ettt ettt ettt eae et e erseereesseeseesseeseesseessasseessesseessesseesseseesseeseersans xi
Table Of tADES ..cviiiieviiiieicctee ettt r ettt et r ettt re et rsereensenns Xiv
LiSt Of aDDTeVIatioNS. ..cvvivieiiiiierieieert ettt ettt ev et ve et rs et erseseesseeseesbeeseesbeessesseersanseerseseens XV
TN ETOUCTION 1ttt ettt ettt ettt se b e s s e st ese s essesaesesaesassesaesassesassessesensasssensesense 1
Chapter 1 The Sensors of the Seacanainyc.ccvevveeiieriieiieiieieiece et enas 3
1 E+E Elektronik EE894 CO; SENSOT veuveuieviierieririeriieriereiereetesiereiessesessesessessesessesaesessesassesseses 4
1.1 Sensor communication and WITINE......covevveerierrierieerieriiereeteereereereeseereeeseerseeseesseeseesseens 5
1.2 Compatible wire and SOCKEES ...c.veveiiiiieieriiieieieteiet ettt ettt ettt ss s essessessensens 7
1.3 Software fUNCHON LISt ..cvieviiiieriiiieriiiiereereere ettt ettt ere et ers e seerseereerseens 8
1.4 Software SCheMATIC ..ovieiieiieiieiieiieticieett ettt ettt ers b essesaeerseseerseessesseessessens 12
1.4.1 General procedure for reading MeasUTEMENTSc.cvevereieiereresesesesesesenns 12

1.4.2 Procedure for reading and writing bytes inside the sensor custom memory....... 12

1.5 Air measurement and data reading timing........ccoevveeieieeieriioiereereereere e ere e 14
1.6 Faced issues during the developmentccocueeieieieieieieieieieieieee e 16
1.6.1 Consecutive I2C write and readcccoeveviieriiiiieiiiieeeereeeeereee e 16
1.6.2 Addition of other I2C devices to the central COMPULEr......c.ccvevveveieierererrerennas 17

1.6.3 inability to manually trigger a measurement..........ocoevveeereeieriereeeeiereereereereereeneen 18

1.6.4 Continuous indication of temperature error on the status byte..........ccccoovevrnnen.. 18

1.6.5 Checksum error during measurement 1eadingsccecververierrerverierieriereeruersernens 19

2 OPCN3 particulate Matter SENSOT..ueuireieieterereierertetesersersesessersessessersersessesseserserserses 19
2.1 Data returned by the SENSOTcioviiiiiiiciiitieriet ettt ere et v s ere v ens 21
2.2 Sensor communNication and WITINE...c.ecvevierrerierierierierieseresesesesesessesessesesesersersesses 22
2.3 SOftware fUNCHON LISt ..oviiiiiieiirieieiers ettt ettt es s s ss et essersessessessessessessessessessas 23
2.4 SOftware SChEMALIC .ovieviiiierieiieiicieet ettt ettt rs et aseeseerseessesseessesseessesseensenns 29
2.4.1 SPI communication iNItiaAtion ce.eeevieeieerieerieeieerieeereeseesseeesseeseeseesssessseesssesssensns 29
2.4.2 HiStogram TaAdiNg ..cvevveierieierierierierierresresiessessessessessessessessessessessessessessessessessessesses 29

vii

Table of content

2.4.3 Perform a particulate matter MeasUTEMENTc.veverierrerieierieriereerrereereereeseeseeseesenns 30
2.5 FaCE ISSUES..eutiteiiieieieietet ettt ettt ettt et e s e bbb e b e s e s e s s ese s e s e eseeseesee 33
2.5.1 Simultaneous reading and writing of data.........cceevveeeeeieieieieeeeeeee e 33
2.5.2 Sensor Slave Select line WiTlNgccvevveievierierieieieiereietesesesesessessessessessessessens 34
2.5.3 Frequency conflict between the OPC-N3 SPI and the GPS UARTccocvn.. 34
2.6 Interference between M&C air pump and SPI communication..........c.eevevevevevennans 35
2.6.1 Isolation of the pump from the 220V line via a noise reducer..........cceceeverreneen 37
2.6.2 Increasing the power SUPPLY CAPACILY voovvieviiiieriiiierieieerieereeie et ers e 37
2.6.3 Addition of a rest period between starting the pump and the first
communication With the SENSOT ...iciviieiiriieiiiiiiii e 38
3 The 4-AFE gas sensors board from Alphasense........ccecvevvevieieienienieienieieieieieieiererennes 38
3.1 Wiring of the 4-AFE board and the Analog to Digital Converter (ADC)cu...... 39
3.2 SOftware fUNCHON LISt veieiiierieieieiiieieieierecieieteiereete ettt esaesesaeseesesaesassessesassesaess 40
3.3 Analogic signal N0ise TedUCHIONovviviiviiiiieiiiet ettt ers s ssess s s ersessessesses 45
3.4 Calibration . cieieieieieieiieieiieiieiet ettt ettt ettt ettt ettt es et esa s s seesaeseeseesseseeseesees 45
4 THE GPS TECEIVET oevievieuierieiierierieetesiertestestestestessessessessessessessessessessessessessassessessessessessessessesseses 45
4.1 Wiring of the GPS T€CEIVET c.ocvivvieiierieiierieiieiieiceieeieeieerteie ettt es e ese s eseenas 46
4.2 SoOftware fUNCHON LISt .evveieriierieieieieierieieietet ettt ettt esaesessesaesessesaseseesessesaeses 46
4.3 FACEA ISSUES.ceveuveriierieriieiieteterteteteteet ettt et se st ese et et eseetesaesesessesessesasessesessessesensesensenes 47
4.3.1 Frequency conflict between the OPC-N3 SPI and the GPS UART 47
4.3.2 Random UART port opening problemccccevverierierierierienienieieieiereiererennes 47
5 Sensirion Mass FIOW MEtercuiiiieioiiieieieieieieteteeies oot ess st essessessessessessessessessenes 49
6 The RTC (real-time clock) = DS323 T aaueioeioieeeeieeeeieeeeeeeeeieeeseieeeeaeeseaeeeseseesssseesssssssassone 50
0.1 FACEA 1SSUES .evvevirieriieiieriieiieteieteet ettt ettt s et et s et ss b esses e b esaesessesasessesansesaesensas 50
6.1.1 T*C PULIUP TESISTOTS wvevevevererereieieeeeeeeeeeeeee ettt snas 50
6.1.2 Integration on the PCB ...coooiioiiiioiiiieie et 50
Chapter 2 Combining components into a measuring deviceccevveveerieeereeeereereereereereereenes 53
1 Building the device into a transportable SUItCASEeveieieieieieieieieieter e eene 54
1.1 Three aluminium plates in the Casingccecvevvevierierierieieieieieiei ettt eer e 56
1.2 The DOttOm PLAL c.voviiieiieiiiieieiieieieiet ettt ettt et ettt essess st essessessessessessessessas 56
1.3 The cover plate in the case lid.......cccoeierierieiieiieiieieieeceeeeereeeee e 57
1.4 THE tOP PlAtEurriiriiriiiiiieieiieieietetetetet ettt ettt et ettt este e stessessessansessensansassansos 58
1.5 Drilling the plate to fix it On the frameccocveeviiiieieier ettt 58
2 Connecting all sensors With tUDESccvevieiiiiieieieieiete e es s eenes 59
2.1.1 The use Of PTFE tUDES..c.coveieriierieieieiiieieieieeeiceieieiteteteeeieaesee e ssesaenann 62
2. 1.2 QT PUIMPD ctteiieiieiieieeitet ettt ettt et e eteesbeesaesbaessassaessesaessasssassasssassanssessenssensens 63
2.1.3 The particulate matter sensor (OPC-N3) bOXcovovveierierierierieriereereereereereereeveenens 64

viii

HZS

2.1.4 The CO; SENSOT DOXuriovierierierierierieiierietierieriereesieseeseesseseeseeseeseeseesseseeseessesaesseseessesens 66
2.1.5 The Sensirion mass flOw MELETc..covieviiiieiiiiieiiiieeeeieereet e 67
2.1.6 The Alphasense 4-AFE gas SENSOT ..c..cvevieieieieieieieieieieieierevetetesesessessenns 67

2.2 The electrical connection of all hardware compPoONentscc.oeveeveieieierieierieieeennn 67
2.2.1 Electric noise on the 220V LIN€..c.ecveriererieririeieiiieieieiereeieieesieeereiesesieeesesseseenes 69

3 Central COMPULET 1ovvevierierierierietetestestesss 70
3.1 The Raspberty Pi ..ottt eve e ere s easene e 70
3.2 The Analog to Digital CONVETTErcecviieviiiieriiiierieieeteereet ettt reers s erseneens 71
3.3 Printed Circtit BOArd (PCB) i eeeeeeeaeeseaeeseaeessnens 71
3.3.1 General procedure for designing a PCBc.cooovioiieriiiicieiicreeeeereeeeeeeeeeveee 73
3.3. 2 SEACANAUTY WITINIE cuvveerreerreeireeireeieeieesirenseesseeeseenssesseesseesssessessseesssssssesssessssensseens 76
3.3.3 The connection between the Analog to Digital Converter (ADC) and the custom
CITCUTE DOAT 1 ettt ettt ettt b et s e b e s s s et eseesesaesessasaesas 76
3.3.4 Tips for a successful printed CITCUIT....c.ovviviirierieieieieteier ettt s s s s essesnas 77
Chapter 3 Setting up the development environment on a stand-alone computer..................... 79
1 Set up the development environment on a personal cOMpPUterc.ccvvevveevevrieieereereeenenn 80
1.1 Development software — PyCRarmc..covoevieiiviioriieiieiicrieieereee e ereeve e evseneens 80
1.2 NEW PIrOJECt CIEATION vvrevreerreeieerrieeieeieessreeseessaessseeseesssesssesssessssesssessssesssesssssssaesssessses 81
1.3 Gitrepository and GitHub accountccocvevviiiiiiiiiiiieeee s 81
1.4 Commit and Push files to GItHUDc.ocveieiiieiiiiieieieicceeieeeeeeeeee s 83
1.5 Libraries installation ...c.cc.cciecieieierienieieieieieieseseseses st essessessessessessessessessessessesseses 84
1.6 Connect to the Raspberry Pi using TeamVIieWerc.ccevveveieievierierieieieieiererennenns 85
1.7 Transfer files from or to the Raspberry Pi....cccoevveieieieieieieieieieieieieiereieereenenne 86

2 Set up the development environment on the Seacanairy central computer.........c..c.cev.e... 86
2.1 Update the Raspberry Pi.....ccovieieieieiiiierieiereeeee ettt ese e 86
2.2 The virtual environment on the Raspberry Pi.......ccocvevieieieieiiiiiiieieeeeeeven 87
2.2.1 Create a Virtual ENVIrONmMEeNt......ccioiieiiiiieiieiieieeicere et esse s 87
2.2.2 Virtual environment aCtivVationeeevevereeveriereiereereierenieieressereesesesessersesesserseses 87
2.2.3 Activate the virtual environment in Thonny Python IDEc.ccoeevvevievienninnn 88

2.3 Install Python libraries on the Raspberry Pi....cccoovevievieierieieiiiiieieieieieeeeeieeee 89
2.4 Testing code on the Raspberry Pi...cc.covveieieieiiieiiiiciicieeeieeee s 90
2.4.1 Copy-pasting in Thonny Python IDEccccceeieiiieieieieieieieieieieieieieieviennen 90
2.4.2 TeamViewer File Transfer and python3 in consolecccecvvveievevieenierieeniennnnen 91

3 Console tip ANd trICKS cuveviiieieieieieieieiet ettt ettt et ssess et ess s essessessessessensensessessessenes 92
4 Raspberry Pi passwOrdocieieieieieieiiieieieses ettt et ess et ess st essessessessessessessessessessenes 92
Chapter 4 Software of the SEacanairycovvevierieierieieieieieietet ettt es s essers s essessessessessenes 93
1 Overall Seacanairy SOftWare SETUCTUTEcveveviereeieriererieseesesiesetessesessesessessesessessesessessssessesesses 93

Table of content

2 Information display and logging fUNCHONSc.evieveierieieieiiierieteiereeieesereie e esesnesees 96
3 SELEINES PAZE cvveervreirerireeieeiteniteeitesteeteeseestaessseessaesaesssesnsaensaesssessseensaesssessseensaesssessseenseensns 98

3.1 Choice Of file fOrMAt c.veveieierieieieieieieieieieiet ettt ettt estessestessessessessessessessessas 98

3.2 AVvailable SETHNES c.veveieieieieieiei ettt ettt ettt rs s ersessersersersens st ersersensas 99
4 MySQL Database ..c.cevevererierieieierieieiererieriereiereetestesesesaesesteseesesaesesseseesessesessessesessessssessesens 101
5 Global Seacanairy SCIIPL ...cieierieieieieieietetetetesesessessessessessessessessessessessessessesessersessesses 104

5.1 Manual operation through the touchscreen.........ccccceeveeiiiiiciiiicieieeeeeeen 106

5.2 AULOSTATE AL DOOL 1vievieiierieiietieiietietietiertettettertert et essessessessessessessessessessessessessessessessessesses 106
6 Software files and fOIAErS ...cvevieiiieieiiieieieieeee ettt ens 107

0.1 LASE OF f1lES.1uietieiieiieiieiieiieitetetet ettt ettt es et ess e e s e se s s esaesseseesaesaesaesseseeseens 107
CONCIUSION 1.ttt ettt ettt e b s e se et e st es e s esaesessesasassesessesaesessesasassesensessesans 111
Annexe 1 LISt OF fIlE5 1uvvivreriererieriieieteietetetee ettt ettt ettt setese s essesaesesaesens 113
Annexe 2 Case panels dimensions.......ccevvevieieiiieieietiteses et essesesessessessessessessessessesses 115
Annexe 3 Schematic of the Seacanairy Wiring.....c.ocvevvevveierieierieieieieieieieiereresesesennes 117
Annexe 4 Seacanairy PCBooviiiiiiiiiiiiicieieeeeetet ettt s 119
Annexe 5 O Z.PY tettterreeiteteeteetterte et et e iteebeesbaesiaesssesssaassaesssesssassssesssesnsaensaenssasnsasnsasnsns 121
ANNEXE 6 OPCN B DY ittt ettt es et et se et e e e s esseseesessesessesaesassessesessesans 134
ANNEXE T AFE DY ittt ettt s e b et b et s e sa st sesenee 154
Annexe 8 P S DY ettt ettt ettt ettt tb e et at e st e e bt e bt e e st e ensaeseenns 168
ANNEXE T FlOW. DY ittt ettt ettt ettt et ettt ess st st essessestessentessensensessensenee 176
Annexe 10 database. Py .oovecieieieieieieieiei ettt esb et esbensers st enes 183
Annexe 11 seacanairy_settings.yamloc.ecvevverierierierienieieieieieiet oot entesessessesessessessessens 190
Annexe 12 AFE calibrationccieieieieiiieiieieieieieicieeeieieiet et ese st a st ese s ene 192
Annexe 13 set_System_timMeE.Sh....iiiiiiioiiiieiiciceiieice ettt err e b eseensens 193
Annexe 14 Graph from the measuring device.......coveverveieieierenieieieieieieiereeiesereeeeese e 195
I TEMPETATUTE .ottt ettt ettt ettt ettt et s st e st e st e e st e st e st estestestestestessesseseas 195
2 PartiCUlate MATLET c.oovievievieiieiierieiierietiete ettt et etsessessessessessessessessessessessessessessessessessessessons 196
3 (GAS SEIISOTS vevreerreervrerrveereensrensseesseenssesssesssaensssnssessseenssesssesssesnsssnssessesnssssssesssesnseenssesssessseens 197
4 AT TLOW ettt ettt b e et s st e s e s et eseseneenens 198
5 SO2 peak when a nearby [awn tractor Passeseeeveieveriererieriererieiereieresiessesesessesesnesans 199
B iOZIaADRY 1.ttt ettt rb et et b e st b e et e ra e st e easesseersenseersenns 200

Table of figures

Figure 1 Picture of the COZ SENSOT....ioiiriieriieiierieereeteereete ettt et e ese s eseesseessesseessesseessanns 5
Figure 2 [2C cOMMUNICATION SENTEICE .eeuvvrerrreeeerreerreeeirreeerreseseesssseeesssesssseessssesssssesssssessssesssns 7
Figure 3 = (COZ SENSOT CONMECTOLS cuvvveerurreerreererreeesresesreesesseesssesssssesessesssssesssssessssssssssesssssesssseeses 7
Figure 4 General procedure for reading CO; sensor measurements flowchart..................... 13
Figure 5 Reading and writing inside sensor custom memory flowchartc.cccoevevveverennane. 14
Figure 6 CO; 5ensor SAMPIING tIMINE c.veveveieieieieresesertesesessesersesessessessessessessessesessessesss 16
Figure 7 Schematic of [2C write and read sentences without any STOP bit in between 17
Figure 8 I2C write and read sentences without any STOP bit in between (Python code)..... 17
Figure 9 Pictures of the OPCINS3.....ciiiiiiieieieieeeteteetet ettt aeses 20
Figure 10~ Schématic of the connection of multiple SPI devices to the same Master 23
Figure 11 Flowchart of the SPI communication initiationcvevveveievereersesesesesesesnenns 31
Figure 12 Flowchart of the histogram readingc.ocvevveieiiiiieieiereiee s 32
Figure 13 Flowchart of getting data from the OPC-N3 Sensor.....ccvcvveieieieieiererereiennnns 33
Figure 14 Power supply of the central computer (Raspberry Pi and printed circuit) and 1
Farat CAPACITANCE 1ovvveeiieeiiieiieeieeiteite ettt ete ettt e e teeetae e b e esbaesaesssaesseenssaessaesseenssanssaenes 37
Figure 15 Schematic representation of the Alphasense 4-AFE wiringcccccovevvevevveveviennnen 40
Figure 16 Velleman VMA430 and U-BLOX NEO-TM chip ..ccvcoveviivieieieieieieeererereennns 46
Figure 17 Is -1 /dev* on Raspberry Pi, UART configurationccoceeevvevieverieeereriereerennnns 48
Figure 18 Switching UARTSs on the Raspberry Pi (CONfig.tXt)c.ovveveiiieieieierererereenenns 49
Figure 19 RTC DS3231 Chip cvveveeveerieiieiieieieiieiieiteieietetertestestestessessessessessessessessessessessesseses 50
Figure 20 Relocation of the DS3231 socket to solve the PCB design problem................... 51
Figure 21 The case of the SeacanaITYccvcvvieiieiieiieiieieieee ettt s eae s eaeas 54
Figure 22 Pelican Storm Case iM2720 Defore/after ..uem e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeene 56
Figure 23 Bottom plate fixing bolts (and the four bolts)ceevevieiiviirieiiiiiereeeeeen 57
Figure 24 Picture of the bottom plate and its COMPONENLScvvevvevierrerierierierrereerererrerenenns 57
Figure 25 Cover plate (in the case lid), back and front sidecccceevveveeierieieieiirieriereenne 58
Figure 26 ~ Top plate, back and front side.........covevveieierierieieieieeeeeeeeereee e 58

X1

Table of figures

Figure 27 Schematic of the inboard piping SYStEMcvevevvevieieieriierieieiereeieeereeereiesnereenas 60
Figure 28 Picture of the piping system inside the Pelican case........c.cccovvevvevvevievvevievrerenennnn 60

Figure 29 Air pump in its initial situation (on the left), unbolted, and rotated (on the right)

64

Figure 30 Operation of the needle valve of the M&C air pump ..c.oooveeveeieeveeieerieieereennene 64
Figure 31 The OPCNS3 DOX .uvieviievieiiiciieriieieereere et ere et erseere s eeseesseeseesseesseseerseseersaseas 65
Figure 32 Connection of the tube system to the OPC-N3 via a Swagelok connector and

fOUT threaded TOAS . .oviieieieieriieiieeecceee ettt ettt saesasesaess 65
Figure 33 Fixing the OPC-N3 box to the bottom case panelcccoovevvevierievierierieiiieiennn 66
Figure 34 The COu DOX ittt ettt s bt ss et ss s b essesessesee 67
Figure 35 Shaping of the M&C connector and assembly of waterproof connectors 67

Figure 36 Picture of the 220V derivation box (on the left), and the Tokin noise filter (on
ThE TIZNE) oottt ettt ettt b et se e e s et ereses 69
Figure 37 Schematic of the wiring of the Tokin noise filter on the M&C air pump.......... 70
Figure 38 Central computer unit (from bottom to top: Raspberry Pi, Pil6-ADC, custom
printed circtit DOATA) c.ooicieieieieieieeeeee e rs e sserserns 70
Figure 39 Picture of the Raspberry Pi 3B+ (on the left) and the PI-16ADC (on the right). 71
Figure 40 Overview of the wiring of the first prototype (on the left side) and overview of the
wiring of a similar system using the PCB-board (on the right side)ccoovevviiiiiiiiennnnn. 73

Figure 41 Comparison of the symbol on the schematic with the footprint on the printed

CITCUIE DOATA 1ottt ettt ettt seseaee 4
Figure 42 Positioning of the footprints and tracing of the electrics linesccccvevvevenenne. 75
Figure 43 Printed circuit as supplied by EUTOCITCUILS ...ovvevvevierievieiiirieiieieieeeeeeeveeveeveevene 75
Figure 44 Welding the connectors on the custom PCBcooveviieicviieiieiceceeei 76
Figure 45 Connection between the printed circuit board and the ADC.........ccccovevvevrenennen 77
Figure 46 Female header on the ADC and male header on the printed circuit board....... 77
Figure 47 PyCharm SCreeNSNOT . c..c.ieiieiieiieiieiierierierteietieteitet ettt eseese e see e eseeseeseesaeseesees 80
Figure 48 Create a new project in PyCharmcc.oovevveieieieieieieieieieieieieieeieieieiennen 81
Figure 49 Git incorporation to PYCRarm.......cocecvevieieieieieieieieieieieieieieieieievesveienes 82
Figure 50 Log in GitHub using PyCRharmcocoevieviieieiieiiieieeeeeeeee e 82
Figure 51 Create Git repository through PyCharmcccooveiieiiiieiiiiceee 83
Figure 52 Commit and Push changes to GitHUbccovveiiieiiiiieieeceeeeeev 84
Figure 53 GitHub repository eXamplec.ooveiierieiieieiieieiee ettt s 84

xii

HZS

Figure 54 Install libraries on PyCRharmu.....ccocveieieieieieieieieieieieieteret et essessesnessene 85
Figure 55 File transfer from/to the Raspberry Pi......cccovvieieriioiiiieieiiceeiceeeeeereeveens 86
Figure 56 Activate the virtual environment on the Raspberry Pi.....ccccooevvvvvieiiviieiiciiiinn, 88
Figure 57 Opening Thonny Python IDE.........ccooivieiiiiieiieieieiceieeeeetet e 89
Figure 58 Virtual environment in Thonny Python IDE.......c.ccceoivviiieieieieieieieieieieene 89
Figure 59 Copy-pasting code from PC to Thonny Python IDEc.ccooveiiiiieiiiiieienen 91
Figure 60 Testing code using file transfer and console.........ccocvevievievieiirierierieieiererereenne 92
Figure 61 SeacanAiry SOftWATE STTUCTUTE ..eovverveerrerieerrerteerrerseesensaessesseessesssesessaessesseessesssessenns 94
Figure 62 Importation in Python examplec.ocovieiiiiiiiiiiiiie et 95
Figure 63 General Python Script JayoUt.......oieieieieieieieeeet et ene 96
Figure 64 Log@ing floWChart.. c.ociiiiiieieiiieieie ettt s s essess s essessessens 98
Figure 65 Visual comparison between JSON and YAML.......cccoovoviiviiiiieieiereeer e 99
Figure 66 MySQL connection process flowChartc.ocvevveieiiieieioieieeee s 102
Figure 67 Database software floWChartcveieieiiiiieiecc s 103
Figure 68 Display of the data stored in the MySQL databasecccoovevviiiiiviivieieieiennn 104
Figure 69 Flowchart showing Seacanairy software functioning........c..ccoevevvevevvevverververnennn 105
Figure 70 Welcome screen of the Seacanairy (shown on the touchscreen)ccoevevvenee. 106
Figure 71 SEACANAITY SETVICE STATUS..vvevveerreerrerreerreseesseseessesseessesseessesseessessesssesssessesssessessseses 107
Figure 72 Files used by the Raspberry Pi for the proper execution of the software........... 109
Figure 73 Lid and Base panel plancoovevievierierieioiieieiieieeeeeeeeeeve et 115
Figure 74 Bottom panel Plancocveieieviieieiiieiiicieicieitereeeet ettt 116
Figure 75 Seacanairy electronic and electric schematic........ccvevveierierierieieieriereerieeereereenns 117
Figure 76 Seacanairy PCB version 2.0 (CUITENt VErSION).....cvevverierieierrerieeerseeesessesesnennas 119
Figure 77 Seacanairy PCB version 3.0 (RTC DS3231 corrected)......coeevveerveeererrereerernenns 120
Figure 78 Graph of the temperature measured in a garden in the countryside................. 195
Figure 79 Graph of particulate matter sampled in a garden in the countryside................ 196
Figure 80 Graph of gas concentration in a garden in the countryside.........cccoveverierierenenn 197
Figure 81 Graph of the flow rate measurement of the Seacanairy while sampling in a
garden in the COUNTIYSIAE...c.ivviieiirierieieietiieeet ettt esa s eseenes 198
Figure 82 Graph of gas concentration measurements on a terrace in the countryside 199

xiii

Table of tables

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20

List of Seacanairy sensors, what they measure, and their communication protocol. 4

Epluse E+E Electronik CO2 sensor characteristicscooveeveeverreerieeeeieereeseereeneenes 4
CQO; Sensor tensions and resistors manufacturer's recommendations............c.ee...... 6
CO2.Y LiSt Of fUNCEIONS 1.vrevirievieiieieeiieiierieieeteeieereere et ese e eseeseessesseseesaessesseseens 9
OPCN3 $enSOT ChaTaCtETISTICS v.vevvereevenierenieriereieriereiereterterenteseesestesesseseesessesessessesens 20
Compatible sockets with the OPC-N3........coooviiiiiiieiiieeeereeeereeeee e 22
OPCN3. Y LiSt Of fUNCHONS vvevvievieveerterierteereert et eteere et ereeere s eereersesseerseessesseeseessens 25
Inventory of the Alphasense gas SENSOTcveieieieieieieieieieierererererererressessens 39
OPCNB3. Y LiSt Of fUNCEHONS vvevveevierierrerierreereereeereeteere et ere et erseereersesseerseeseesseeseessens 41
GPS. DY fUNCHON LISturtietierierieiierierierierieieietes et ess st st essessessessessessessessessessessessesseses 46
Inventory of the components needed to build the casing.......cccccoevevveviiieieieiennnne. 55
Inventory of the PIPING SYSTEM c.vevieieieieierieieierterterertessessessessessessessessessersessesserseses 61
Electrical connections for pOWET SUPPLY c.vevvevierieieieieieieieeeieteresereerersessessessens 68
Inventory of the Central COmMPULET....c.oveieieieieieieieieier ettt es s esessessessens 71
Inventory of the printed circuit boardccevieieieieieieiiicieeeee e 72
Raspberry Pi TeamViewer ID and Passwordcccocvevvevieieieieienieieieieicierenne 86
PIP3 FUNCHON LIS covivviiiiiiiiiiciei ettt ettt ettt s bbb ersersersensessess 90
Tip and tricks CONSOLE ..cvveviieriiiieriieieieieeet ettt esens 92
Raspberry Pi username and password.........cceveeiereeieieieierieieiereeieeereiereeseseseseseenes 92
Functions to manage the Seacanairy service for autostart after boot 106

Xiv

List of abbreviations

-Py
ADC
AFE
CS

CS
GND
GPIO
GPIO
HAT
I:C
IDE
MISO
MOSI
NL

orcC
PC
PCB

SCCM

SCL
SCLK
SDA
SLH

SLM

UART
USB
SP1

Python filename extension
Analogue to digital converter
Analogue Front End

Chip Select

Clock stretching

Ground

General Purpose Input/Output
General Purpose Input/Output
Hardware Attached on Top

= [IC: Inter-Integrated Circuit
Integrated Development Environment
Master In Slave Out

Master Out Slave In

Normal Liter: gas volume unit at standard pressure and temperature conditions

(0°C, 1 bar)

Optical Particulate Counter
Personal Computer

Printed Circuit Board
Receive

Standard cubic centimetre per minute: flow rate of a gas at standard pressure
and temperature conditions (0°C, 1 bar)

Serial Clock
Serial Clock
Serial Data Line

Standard litre per hour: flow rate of a gas at standard pressure and temperature

conditions (0°C, 1 bar)

Standard litre per minute: flow rate of a gas at standard pressure and
temperature conditions (0°C, 1 bar)

Transmission
Universal asynchronous receiver transmitter
Universal Serial Bus

Serial Peripherical Interface

List of abbreviations

Xvi

NDIR Nondispersive infrared (technology)
ACK Acknowledge
NACK Not acknowledged

Introduction

A good breath of fresh sea air inspires many people to travel to the sea or go on a cruise
trip. Unfortunately, ships emit substantial amounts of air pollutants. Although the
contaminations are invisible, colourless and odourless, sea air is not as pure as it used to be.
Suppose the wind and ventilation direct these pollutants towards living areas. In that case, crew
and passengers are exposed to sulphur oxides, particulate matter, or nitrogen oxides. It is hard
to evaluate if the air quality in the ship's surroundings is always good or bad or if pollution occurs

only at specific times. Also, one wonders what the effect might be for a cocktail of pollutants.

These questions can only be answered by thoroughly analyzing the air quality in and
around ships. For this purpose, equipment is required to measure the concentration of several
ships' specific pollutants in real-time. Many crowd-sourced science projects suggest the creation
of such kinds of devices using low-cost components. However, the research question can only be
answered using reliable, calibrated, and relatively easy systems. This thesis aims to propose the

design of such a device: the Seacanairy.

The first chapter introduces the selected sensors, which are the heart of the Seacanairy.
Each sensor connected to the central computer requires a specific wiring and electrical
connection, communication protocol, and proper software to ensure correct operation and data
retrieval. Along the way of designing the Seacanairy, several problems (e.g., interferences) were
encountered with various sensors, requiring research to find a proper solution. A dedicated

subchapter inventories the troubles encountered.

The second chapter explains how all the required components are combined into one
single instrument inside a solid suitcase. The most challenging part consists of finding the
necessary components on the market, considering compatibility with the other elements. An
overview of the components used and their suppliers are provided to build a similar device for
every embedded system. A tube connects all the sensors so that the same air passes through the

sensors one after the other. During this stage, several problems were met, such as the shape of

Introduction

the particulate matter sensor (OPC-N3), which does not allow an easy coupling with the tubes.
In addition, all these sensors are connected to a central computer through electrical wiring,

leading to interferences between different devices.

The fourth chapter explains setting up a development environment on a stand-alone
computer to work on the Seacanairy software. Finally, the fifth chapter covers the Seacanairy
software that synchronizes all the sensors, manages settings, stores measurements into a database,
and interacts with the operator. There is also a connection between the Seacanairy measuring

tool and the cloud to access the data remotely in real-time.

Chapter 1
The Sensors of the Seacanairy

The Seacanairy is equipped with several sensors to measure the environmental
parameters necessary to determine the air quality, such as gas sensors, particulate matter,
temperature, pressure, and relative humidity. This chapter covers a series of points for each
sensor employed within the Seacanairy. First, each device is designed to communicate with a
computer via a specific communication protocol, such as UART, I2C, SPI or analogue. Each
protocol has its own technical characteristics and therefore requires between 2 and 5 cables.
Generally, on the sensor side, the connection is made via a female socket. The right compatible
wire should be purchased as soon as possible to run some tests as the software is written. Second,
the manufacturer's documentation gives instructions on how to communicate with the sensor.
Those papers are often complex and incomplete. Making the correct electrical connection and
performing the proper communication operations through custom software requires hours of
research and many trials and errors. Every binary data sent by the sensor must be correctly
decrypted and converted by the central informatics unit in readable values, i.e. concentrations,
temperatures, pressures... After extensive research and many retrials, the software performs the
processes smoothly and manage automatically every step to control the sensor and retrieve its
data. For each sensor, a table lists all the software functions. Some flowcharts demonstrate the
logic followed by the software. Finally, the last point explains the issues encountered, their causes

(or hypothesis) and solutions. Table 1 lists all the sensors on board the Seacanairy.

The Sensors of the Seacanairy

Table 1 List of Seacanairy sensors, what they measure, and their communication protocol
Source: own work
I;lleoce Name Parameters Communication
E+E Elektronik EE894 | CO;, temperature, relative humidity, .
1 . I2C (E2')
CO; sensor atmospheric pressure
2 Alphasense OPC-N3 Particulate Matter Serial
3 Alphasense 4-AFE gas NO;,, O3, SO,, CO, temperature Analog
sensors
4 GPS Latitude, Long1t.ude, speed, heading, UART
time...
Sensirion Mass Flow
. ﬂ 2
> Meter 4100 Air flow e
6 Real Time Clock Time 12C

1 E+E Elektronik EE894 CO; sensor

The CO; sensor (see Figure 1) is an “Epluse E+E Elektronik EE894-HV2PCBSE25

Compact”, which measures CO;, temperature, humidity, and ambient pressure for changing

environmental conditions. The specifications of this sensor can be found in Table 2.

Table 2

Epluse E+E Electronik CO2 sensor characteristics

Source: adapted from the official documentation [11]

Co, Temperature Relaflee Atmospheric
Humidity pressure
Units ppm °C %RH mbar
700
—40 - 1100 mbar
0
Range 0 - 5000 ppm 5 60°C 0 - 95 %RH (non-
condensing)
Accuracy 0 + 2 mbar
(a25°Cand | IOOPPMASHOL |y o500 | £300RH | (from 2010 80
1013 mbar) % RH)
Calibration Every five years -

Response time

105 seconds with
measured data
averaging
60 seconds with an
instant data reading

! Proprietary protocol.

4

HZS

The sensor relies on dual-wavelength NDIR (nondispersive infrared) technology to get
long-term stable CO; readings. An infrared source with a specific wavelength and frequency
irradiates the gas chamber. Each molecule's atoms have their resonation frequency in function
of their mass. Therefore, CO, molecules in the sampling space will resonate and vibrate at a
known frequency which is the one used by the infrared source. A detector measures the residual
infrared energy behind an optical filter at the opposite side of the infrared light source. The
higher the CO; concentration is, the more molecules will absorb the infrared light, and the less
radiation will be detected. Then, the sensor firmware converts this reading to a CO;
concentration by using the Lamber-Beert Law and applying compensation for temperature,
atmospheric pressure and humidity to increase the reading's accuracy [6,11]. Fortunately, the

sensor does all of these calculations itself and returns the concentration directly.

Figure 1 Picture of the CO2 sensor

Source: own work

1.1 Sensor communication and wiring

The CO; sensor requires two wires for power (pin 2 connected to the ground GND and
pin 1 connected to 5V of the Raspberry Pi). Sensor communication relies on the proprietary E2
protocol, which is derived from the [2C and SMBus protocol. I*C communication requires two
wires: the SDA (Serial Data line) on pin 3 and the SCK (Serial Clock) on pin 2. The pull up
resistors connect the two communication lines with the 3.3 Volts of the Raspberry Pi to gives a
high state on the SDA and SCK in standby mode. When data is transferred, the CO; chip
connects and disconnects the lines to the ground to tune the voltage according to the 12C
standard protocol. Annexe 3 on page 117 shows the CO; sensor wiring when connected alone

to the Raspberry Pi, and Table 3 indicates additional information concerning the wiring.

The Sensors of the Seacanairy

Table 3 CO; Sensor tensions and resistors manufacturer's recommendations
Source: own work and manufacturer documentation [33]
Value recommended by the Value used in the
manufacturer Seacanairy
Bus High Voltage 3.3-> 5.2V 5V
Pull-up resistor
4.7 - 100 kO 20 kQ
(R1+ R2, R3 + R4)

All I2C communication is based on the same method. Also, I2C compatible devices are
wired in parallel, and every device has its own [2C address, defined by the manufacturer. All
communications are composed of sentences, on request of the user software. To start, the Master
(in our case, the central computer - see point O in Chapter 1 on page 3) send a START bit
followed by the device address byte it wishes to contact. The last bit indicates whether the Master
wishes to write (from Master to Slave) or read (the opposite). Then, the concerned device replies
with an ACK (acknowledge) or NACK (the opposite). Afterwards, bytes (composed of eight bits)
follow as written in the software, separated by ACK or NACK bits. An ACK indicates successful
reception of the last transmitted byte, while a NACK bit indicates an error when receiving the
last byte, a complete memory, or the last byte of a read sentence. Finally, the Master completes
the sentence with a STOP bit [15]. Figure 2 summarizes a regular [2C communication [13]. For
this Raspberry Pi, the smbus2 Python library must be installed. The sensor requires the Master
to support clock stretching. As seen in Figure 2, each bit is transferred during clock rises. If the
sensor firmware is not ready to receive the next bit, it will keep the clock line down until it is
ready to read the next bit. In that case, the Master waits for the sensor to release the clock line

to transfer the next bit.

HZS

NACK

Data \/xXxXXXXXXXXXXXXXﬁCK\/
WA AWAWAWAWAWAWAWAW S

Start Stop
condition condition
Start Control Byte Data Byte Checksum Stop
716/5 4[3|2|1|0|ACK|7|(6|5|4|3|2|1|0|ACK|7|6|5|4|3|2|1]|0|ACK
Start 1 A x| x| x| x| x|x|x|x| A |x|[x|[x|[x|x|x|x]|x]| NA | Stop

From Master to Slave

From Slave to Master

Figure 2 T2C communication sentence

Source: adapted from the manufacturer's documentation about 12C communication [13]

1.2 Compatible wire and sockets

The sensor has two different connectors (see Figure 3). The first one is a standard 2.54
mm pitch female header, which is the one used on the Seacanairy. Nevertheless, another male
connection is available on the side of the sensor. The compatible female socket is a 1.00 mm

Mini Edge Card with reference Samtec MEC1-108-02-S-D-A. No connections should be made to

the other available headers’ (see Annexe 3 on page 117 and Figure 3).

Samtec Mini Edge
Card connection

2.54 pitch female header

Figure 3 CO2 sensor connectors

Source: own work and official documentation [11]

? Manufacturer’s recommendation.

The Sensors of the Seacanairy

1.3 Software function list

In order to operate the sensor correctly from the central computer, Python code has
been written based on the manufacturer's official documentation and 12C examples from the
internet [8,9,10,11,18,31,33]. After hours of trial and error, the software performs the
communication properly, the data verification, the conversion of the transmitted bytes into
measurements, and the change of parameters within the sensor. Table 4 list all the functions of
the CO; software. Note that get data () is the final function that performs all the necessary
operations to obtain all the measurements easily. A copy of the Python file (co2.py) is available

in Annexe 5 on page 121.

HZS

Table 4 CO2.py list of functions

Source: own work, with the help of the manufacturer's documentation [8,9,13]

Function

Goal

Argument

Return

loading bar
(name, delay)

Show a loading bar on the screen
for a certain amount of time.
Make the user understand the
software is doing/waiting for
something

name: Text to show on the left of the
loading bar (waiting, sampling...)

delay: the amount of time the system is
waiting (seconds)

Nothing

digest (buf)

Calculate the CRCS8 checksum
(based on the CO2

documentation example)

ouf: List of bytes to digest [bytes to
digest]

Calculated checksum

check (checksum, data)

Check that the data transmitted
are correct using the data and the
given checksum

checksum: Checksum given by the
sensor (see sensor doc)

data: List of bytes transmitted by the
sensor before the checksum (see sensor

doc)

True if the data are correct,
False if not

Status
(print_information=True)

Read the status byte of the CO2
sensor

!I'It will trigger a new
measurement if the previous one
is older than 10 seconds

print information: Optional: False
to hide the screen messages

True if the last measurement is

OK, False if NOK

getRHT ()3

Read the last Temperature and
Relative Humidity measured,
process the bytes, check a
checksum, convert in °C and

%RH

Dictionary with the following

items {"RH",
"temperature"}

3 Refer to Figure 4 on page 50 for detailed flowchart.

The Sensors of the Seacanairy

temperature, humidity

Function Goal Argument Return

Read the last CO2 instant, CO2 Dictionary containing the
average and pressure following items {"average",

getCO2P ()3 measurements, process the bytes, "instant", "pressure"}
check checksum, convert in hPa
and ppm
Get all the available data from Dictionary containing the
the CO2 sensor (CO2 following items {

get data() instant/average, pressure, "pressure",

"temperature", "CO2
average", "CO2 instant",
"relative humidity"}

internal timestamp
(new_timestamp=None)

Read the internal sampling
period of the CO2 sensor. To
change the value, write it
between the brackets (in seconds)

new timestamp: None or empty to read,
new value in seconds to change it.

Actual internal sampling
period of the sensor

trigger measurement
(force=False)

Request a new CO2, t°, pressure
and RH measurement IF the
previous one is older than 10
seconds. Force to avoid the
previous 10 second's condition.
Same function as 'status ()’

force: True to apply the function two
consecutive times to be sure that the
sensor is well synchronized with the
Seacanairy; False to apply it once
(during the main loop of the Seacanairy,
for example)

True or False if status if OK
or NOK

read internal calibration
(item)

Read the internal calibration of a
particular sensor item

item: indicate which internal calibration

to read: 'relative humidity’, 'temperature',
‘pressure’, 'CO2', "all'

A list containing the
calibration settings [offset,
gain, lower limit,
upper limit]

read from custom memory
(index, number of bytes)*

Read bytes from specified custom
memory address in the CO2
sensor internal memory

index: index of the data to be read (see
sensor doc)

number of bytes: number of bytes to
read (see sensor doc)

list [bytes] from right to
left

* Refer to Figure 5 on page 22 for detailed flowchart.

10

HZS

Function

Goal

Argument

Return

write to_custom memory
(index, *bytes to_write)*

Write data to a custom memory
address in the CO2 sensor

internal memory

index: index of the customer memory to
write (see sensor doc)

bytes to write: unlimited amount of
bytes to write into the internal custom
memory at index (see sensor doc)

True (Success) or False

(Failure)

11

The Sensors of the Seacanairy

1.4 Software schematic

The purpose of the following flow charts is to illustrate graphically the various stages
conducted by the Python software during the execution of various functions. The steps shown
are the result of extensive research based on the manufacturer's documentation, internet

examples, smbus2 library documentation, and trial and error.

1.4.1 General procedure for reading measurements

Figure 4 on page 13 is a flow chart graphically representing all the operations
automatically performed by the getco2p(), getRHT(), and get data() functions. The
corrugated rectangle in the top right of the flow chart represents the Seacanairy settings file (see
point 3 on page 98). In the centre of the flow chart, the large rectangle represents the 12C
communication. On request, the sensor sends the bytes containing the measurements, followed
by the result of a known calculation based on the bytes transmitted, called the sensor checksum.
Then, the central computer performs the same calculation with the received bytes and compares
its result with the sensor's result. If the two checksums are identical, then the bytes are the same,
and the transmission is successful. However, if the checksums are not identical, it means that

bytes received by the central computer are corrupted.

1.4.2 Procedure for reading and writing bytes inside the sensor custom memory

The CO; sensor has an internal memory holding a series of numbered bytes. Each byte
corresponds to a specific setting, such as the measurement period, calibration, or sensor status.
This memory is accessible by the user and keeps the settings even in a power supply interruption.
In order to use the maximum of available sensor functionality, it is, therefore, necessary to be
able to read and change the content of the sensor's memory. Figure 5 on page 14 is a flow chart
representing the procedure followed by the software for reading and writing bytes inside the
sensor memory. Functions read from custom memory(index, number of bytes) (for
reading bytes from the sensor to the central computer) and write to custom memory (index,
*pbytes to write) (for writing bytes from the central computer to the sensor memory)

automatically performs all steps shown in the flowchart.

12

HZS

seacanairy_settings.yaml
> 'max_attempts’

Wait 3 seconds

Increment 'attempts'

True

If 'attempts' <
'max_attempts'

False

Write bytes on I°C
{OxEQ, 0x00] or
[OxEQ, 0x27]

Without any STOP bit in
betwesn

Read a certain
number of hytes
on I*)C

v

Bytes received

v

Data bytes

v

Calculate checksum

v

Checksum

False

f calculated checksum
== sensor checksum

True

v

Process bytes

h 4

Return
measurements in a
dictionary

Y

If fa

ilure

Wait 3 seconds

Increment
‘reading_trial

True

f 'reading_trial' <
'max_attempts'

False

Return error «

Figure 4 General procedure for reading CO; sensor measurements flowchart

Source: own work, based on manufacturer's documentation instructions [8,9,10,13]

13

The Sensors of the Seacanairy

Bytes to write
One or more
bytes

Write bytes to

Fad
@memory
2

Y 4 A4

[2C writing operation

Calculate checksum

Write following bytes in following order: < based on the bvtes
O0x71, Ox54, index, [bytes to write], checksum y
A A
1
h 4 |

Index
Delay Plaqe to
read/write bytes

A 4
Check that writing process
has succeeded

Read bytes from
custom memory

A 4

[*C writing operation
Write following bytes in following order [€—
0x71, 0x54, Index

A 4

I’C reading operation
Length = number of bytes to read

Does it fit with bytes

Writing failure,
N initially sent?

R o]
try again

If writing procedure — Bytes received

Yes

Writing process end Reading process end

Figure 5 Reading and writing inside sensor custom memory flowchart

Source: own work based on the manufacturer's documentation [8,9]

1.5 Air measurement and data reading timing

The CO; sensor is designed to takes measurements autonomously at a constant sampling
time. Function internal timestamp () writes the desired sampling time in seconds (a number
between 10 and 3600) into its memory. Since the data written in the internal memory remains

stored despite a power cut, each time the sensor is powered up again, it starts measuring

14

HZS

automatically at the last period written in the memory. That way, getRHT () and getCO2P ()
functions do not measure the air but read the last values in the internal memory. However, if
the user wishes to measure at a precise moment by himself, he can request the sensor sampling
by reading the status byte or executing the trigger measurement () function. If the last
measurement taken by the CO; sensor dates back for more than 10 seconds, then the sensor will
take a new measurement. However, if the last measurement is more recent than 10 seconds, the
sensor will not take a new one. In order to be sure that the sensor performs a new measurement,
regardless of the time interval that has elapsed, the following procedure should be followed:
request a new measurement, wait 10 seconds, and trigger another measurement. In this way,
regardless of whether the last measurement is old enough or not, the conditions will be fulfilled
for the second triggering to occur because there will always be a minimum of 10 seconds elapsed
since the last measurement. This procedure is automatically performed by function
trigger measurement (force=True). After each triggered measurement, the sensor interval
time counter is set back to zero, and the following measurement will therefore occur when the

sensor sampling period is elapsed.

Figure 6 is the sensor timing schematic, as given by the manufacturer. Note that the
sensor's firmware manages the blue part on the graph while the central computer controls the
red/green part. Sampling initiation (Power-Up) occurs autonomously at regular intervals as
defined in the sensor memory under the sampling period or manually when triggered by the
user, as explained before. Contrary to what one might think by looking at the diagram, the sensor
does not notify the central computer when the measurement is complete. It is, therefore,
impossible to know when the data are ready for reading unless manual triggering and close
monitoring of the time elapsed via the software. The software should wait a minimum of 15

seconds between measurement triggering and data reading (recommended by the manufacturer).

In order to reduce that sampling uncertainty, the Seacanairy software has been designed
to proceed as follows. At startup, the central computer writes into the sensor memory the
sampling period. Then, it requests a measurement via the trigger measurement () function.

Ten seconds later, the Seacanairy software loop starts. At the start of each new loop, the central

15

The Sensors of the Seacanairy

computer sends a measurement request to the sensor. Then, it waits for a minimum of 18

seconds’ before reading the data into the CO; sensor memory.

Minimum Typical Maximum
t pwrup® (power up) 4.7s 16.2s
tmeas (measurement) 0.8s
t mii (measurement time interval) +6.25% 15s 3600s

* see chapter 6.1

Examples:

Measurement i

v

Power-UP

E2 interface
communication

Power-UP

- ..randomized power up delay
...measuring

...reading measurement value 4
...reading status byte
Figure 6 CO; sensor sampling timing

Source: manufacturer's sensor documentation [8]

1.6 Faced issues during the development

1.6.1 Consecutive 12C write and read

In contrast with the standard I2C protocol (refer to point 1.1 on page 5), the CO;
communication works by combining write (from Master to Slave) and read (from Slave to Master)
actions in one single sentence, without any STOP bit in between, as shown in Figure 7. Where
most devices using 12C communication separate write and read operations into two separate
sentences, the CO; sensor does not. After intensive research and trials, it appears that the
standard sMBus Python library usually used for I2C communications had been updated for such
devices under the name smbus2 [18]. Figure 7 is the schematic transmission to be followed by
the central computer to read relative humidity and temperature and Figure 8 is a Python code
template for doing such 12C operation. Note that the green parts in the schematic go from the
CO; sensor to the central computer and the white parts from the central computer to the sensor.

The ACK (acknowledge) bits indicate successful reception of the last transmitted byte, while a

> Other tasks are processed by the central computer during this delay. If those task takes extra time, then the delay
may increase.

16

HZS

NACK (non-acknowledge) indicates an error when receiving the previous byte, a complete
memory, or the end of a read operation. CS means clock stretching, the situation where the slave

keeps the SCK low to make the master wait.

START| I°C ADDRESS - 0x66 (W) | CS ACK{ CMD MSB - 0xE0 [ACK} CMD LSB - 0x00 LACK}

-
‘ T
\ s 001100110 \1 11000 0 o\ |o 00 00 00 u\ ‘
— 1 L L 1 1 1 L 1 1 1 1 1 1 1 1 1 1 L 1 1 1
da a J
A | A |
-

[START I’C ADDRESS - 0x67 (R) |ACK

Step 1A

\ s 0:1:1:010:1:1:1 } No STOP bit
4
<
™ N TEMPERATURE MSB ACK TEMPERATURE LSB IACK CRC8 ACK|
% Pl oit Toit Toit T bit T oit T oit it T bit bit " bit " bit " bit T bit T bit T bit " bit bit " bit " bit " bit T bit T bit " bit T bit | }
- 7,8 ,8,4,3,2,1,0 T,8,5,4,3,2,1,0 7,6,8,4,83,2,1,0
w
4

HUMIDITY MSB ACK HUMIDITY LSB IACK CRC8 NACK|

bit " bit " bit " bit T bit " bit T bit | bit bit " bit " bit " bit T bit T bit T bit T bit bit " bit " bit " bit T bit T bit " bit T bit P
7,8,8,4,38,2,1,0 T,8,5,4,3,2,1,0 7,6,85,4,83,2,1,0

h 4

——
-
7
=
o
°

Figure 7 Schematic of I2C write and read sentences without any STOP bit in between

Source: E+E Elektronik documentation [9]

from smbus2 import SMBus, i2c _msg # import libraries after pip3 install
smbusZ?2 (in the virtual environment)

CO2 address = 0x33 # CO2 sensor iZc slave address

Indicate bytes to be written to the CO2 sensor
(See sensor documentation to know which bytes to send for which purpose)
write = i2c msg.write(CO2_ address, [0xE0, 0x001])

Indicate amount of bytes to be read
read = i2c_msg.read(CO2 address, 6)

with SMBus (1) as bus:

Start the communication, and indicate the i2c sentence between
brackets

START + SLAVE ADDRESS & write bit + [master send bytes] + SLAVE
ADDRESS & read bit + [slave send bytes] + STOP

bus.i2c_ rdwr (write, read)
Bytes read from the i2c communication are returned under the 'read'
variable

print (read) # will print on the screen the bytes sent by the sensor in
a list

Figure 8 I2C write and read sentences without any STOP bit in between (Python code)

Source: adapted from Python Package Index (PyPi) [18]

1.6.2 Addition of other I2C devices to the central computer

As explained in point 1.1, all the devices using the [2C communication are connected to

the central computer in parallel, some having as standard some pull-up resistors on SDA and

17

The Sensors of the Seacanairy

SCK lines welded on their PCBs. For the CO; sensor, the user must add these pull-up resistors
manually when wiring the sensor. However, some devices such as the Sensirion Mass Flow Meter
and the RTC already have their own pull-up resistances on both lines. Therefore, the more
devices are connected to the central computer in parallel (as this is the way of connecting [2C
devices), the more resistors are introduced in parallel, and the more the equivalent resistance®
will decrease’. Once these equivalent resistors drop below 10 k€, which is the minimum value
recommended by the manufacturer, the CO; sensor might not work correctly. After connecting
the Sensirion Mass Flow Meter to the central computer, the CO; sensor stopped working. By
removing the two pull-up resistors from the CO; sensor and unwelding the resistors on the RTC

chip, the CO; sensor started working correctly again.

1.6.3 inability to manually trigger a measurement

According to the manufacturer's documentation, reading the status byte 0x71 should
trigger a new measurement if the previous one is older than 10 seconds (see 1.5) and return one
byte indicating the last measurement status. In practice, reading the status byte never trigger any
measurement. Experiments were conducted to assess the ability of the central computer to send
a sampling request to the sensor. Firstly, the sensor measurement period was set to 60 seconds.
Then, the software was adapted to read the status byte every 10 seconds. The experiment was
carried out in the dark to see the sensor's infrared light during the air sampling. It appears that
only measurements every 60 seconds have taken place. Therefore, this means that the sensor
does not react to any sampling requests from the central computer. In conclusion, it is impossible

to request a measurement at a specific desired time.

1.6.4 Continuous indication of temperature error on the status byte

As shown in Figure 6 on page 15, the manufacturer indicates that the central computer
should read the status byte (0x71) after each reading of the sensor measurements to check the
status of the last measurement taken. When converting the value read into a binary, eights digits
are obtained, either O or 1. Bits 0, 1 and 3" indicate humidity, temperature, and the CO; sensor

status, respectively. A value of 1 on these bits indicates a problem, while a value of 0 shows none.

® The equivalent resistance is the resistance that could replace all other resistance in the electronic circuit without
changing the conductivity properties of that circuit.

" By increasing the resistance, the circuit tends to be open, while by decreasing the resistance it tends to be closed
(Ohm’s law).

8 Note that the bits are read from right to left, and bit O is the first on the right.

18

HZS

Each time the status has been read by the central computer, especially when triggering a
measurement, the CO; sensor returned an error for the temperature sensor. The only plausible

reason is a too low electrical voltage. However, the power supply is constant at 5 volts.

1.6.5 Checksum error during measurement readings

The Python software redundantly returns errors and warning on the screen during the
temperature, relative humidity, pressure, and CO; measurements readings. In practice, as shown
in Figure 4 on page 13, the sensor sends a series of bytes containing the data and the result of a
known calculation made based on the bytes previously transmitted (this value is called the
checksum). So, after reading all the data bytes from the sensor, the central computer performs
the same calculation. Therefore, it should find the same answer, the opposite showing that some
data bytes were not correctly received. While the Seacanairy is running, the checksum Python
algorithm, performing that verification, often detects a mismatch between the two checksums
and prints an error message on the screen. Another message follows, showing the value of the
data bytes, the sensor checksum and the central computer calculated checksum. When taking a
closer look at the information, we notice that similar values keep coming back. This suggests that
they might be error codes, but the manufacturer's documentation never talks about it. When
such errors occur, the software waits for 3 seconds and start rereading the measurements data.
The Python software repeated this read and wait for the loop a certain number of times until the
maximal reading attempt number is reached. This value can be changed in the
seacanairy settings.yaml file, the default value being six. The value 6 comes from several
tests conducted during the development of the Seacanairy. On the one hand, this leaves enough
chance for the sensor to return the data correctly. On the other hand, this prevents the software

loop from taking too much time.

2 OPC-N3 particulate matter sensor

The OPC-N3 is a sensor manufactured by Alphasense designed to measure particulate
matter. As its name suggests, this sensor is an Optical Particulate Counter. A fan forces air to
move through the sensor measuring chamber. Then, a laser beam illuminates the air, the beam
being so thin that it allows the illumination of only one aerosol at a time. When the laser beam
hits an aerosol, the laser light is scattered by the particle. The intensity of the light reflected

makes it possible to determine the type, and the mass of the particle illuminated [14,32]. The

19

The Sensors of the Seacanairy

sensor can detect around 100% of particles with a size of 0.35 pm and around 50% of particles
of 0.30 pm diameter. The sensor measuring range (from 0.35 to 40 um) is divided into 24 bins.
For each bin size, the Alphasense proprietary software counts the number of particulates passed
during one second. The firmware is fast enough to reach 10,000 particle readings per second.
Then, according to the particle size distribution, the sensor returns three mass loadings,
respectively PM; (total mass of particles smaller than one-micrometre particles), PM, 5 (total mass
of particles smaller than 2.5 pm) and PMo (total mass of 10-micrometre particles). Switching
automatically to low and high gain can manage reading PMo of up to 10,000 ug/m3 [2]. The
primary sensor characteristics are summarized in Table 5. After emails exchange with the sensor
manufacturer, it appears that the total flow rate is the total amount of air that passes through
the sensor, propelled by the fan, while the sample flow rate is the air flow that passes through

the laser beam.

Table 5 OPC-N3 sensor characteristics

Source: adapted from the official documentation [23]

0.35 = 40 pum spherical equivalent size
Particulate size range (based on 100% detection efficiency at 0.35 um,
50% at 0.3 um)
Total flow rate’ (typical) 5.5 L/min
Sample flow rate' (typical) 280 mL/min
Max particle count rate 10 000 particles/second
.. - At 10° particles/L 0.84 % concentration
b goitnsitiones pro s2lsilkisy At 500 particles/L 0.24 % concentration

Figure 9 Pictures of the OPC-N3

Source: Alphasense website [24]

? Total amount of air that passes through the sensor, propelled by the fan.
1% Air flow that passes through the laser beam.

20

HZS

2.1 Data returned by the sensor

During each sampling, the sensor returns a histogram containing a whole range of data.
Hereafter a list of all the information given by the sensor, based on the manufacturer's

documentation and mail exchanged with the sensor designers [2,3].

e Bin from O to 23: number of particles for each bin size passed through the laser

beam per minute.

e MToF (mean time of flight): for bin 1, bin 3, bin 5 and bin 7, it is the average
amount of time that particles (for corresponding bin size) took to cross the laser

beam. The sensor uses these values for dynamic fan compensation.

e Sampling period: the amount of time the laser beam has been analyzing the air.
This value is always half the time when both fan and laser run because the sensor

automatically samples in low and high gain.

e Sample flow rate: air flow rate passing through the laser beam. This value is always
lower than the total air flow rate because the laser only measures a part of the

total amount of air passing through the sampling space.

e Temperature: this value should not be considered because the temperature sensor
is not located in the fan air flow. With the temperature sensor being welded to
the OPC-N3's motherboard, temperature readings are always higher than other

more exact temperature sensors (the CO; sensor in the case of the Seacanairy).

e Relative humidity: as for the temperature reading, this measurement should not

be considered.
e PM;: the total mass of particles smaller than one-micrometre particles.
e PM;s: the total mass of particles smaller than 2.5-micrometre particule.
e PMio: the total mass of 10-micrometre particles.

e Reject count Glitch: noise and invalid particle errors indication.

21

The Sensors of the Seacanairy

e Reject count Long TOF: number of particles rejected by the system because of

their too long flight time in the laser beam.

e Reject count ratio.

e Fan rev count. Value has always been zero.

Laser status.

2.2 Sensor communication and wiring

As shown in Figure 9, the sensor has two connexions. The first one is the Serial
Peripherical Interface (SPI) available through a Molex Pico-Clasp PCB Header fitted with a single
Row, six pins and a pitch socket of 1 mm. Table 6 shows the necessary components that should
be purchased to make the connection to the SPI possible. The second connection is a USB

micro-B. Through those two sockets, the sensor can be operated in three ways.

Table 6 Compatible sockets with the OPC-N3

Source: manufacturer's documentation [2], own work

No. | Reference Name Prlce‘per
unit
1 | 15133.0603 Cable Pico-Clasp to Pico-Clasp assembly 1 row, 6 way, 6.6
300 mm length
2 S01331- Male PCB Molex connector 6'61/10
0607 units

The first operating way is the standalone mode. Once the sensor is powered by 5 Volts
via pin numbers 1 and 6 (see Annexe 3 on page 117), and if any communications occur for one
minute on the SPI lines, the sensor starts sampling by itself. Both fan and laser keep running,
and the sensor firmware periodically stores data in the built-in SD card, which is then accessible
via the USB port. However, this autonomous working system is not suitable within the
Seacanairy framework. The second way of employing this sensor is by using the Alphasense OPC-
N3 software with an SPI to USB adapter. Running on Windows, it allows easy use of the sensor
and quick display of the measurements. Nevertheless, this does not meet the requirements of
the Seacanairy. The last operating principle relies on custom software. After reading the
manufacturer's documentation and hours of testing, it was possible to create our own Python

software allowing the excellent operation of the OPC-N3 from the central computer.

22

HZS

The Serial Peripherical Interface is a simultaneous synchronized transmission where both
the master and the slave communicate at the same time bit per bit based on the master's clock
pulse. Therefore, as shown in Figure 10, the protocol requires minimum of three wires: the
MOSI (Master Out Slave In), the MISO (Master In Slave Out) and the SCLK (Serial Clock)
controlled by the master. Annexe 3 on page 117 shows the wiring of the OPC-N3 sensor to the
central computer. It gets power via pins 1 and 5 from the Raspberry Pi. Then, pins 2, 3 and 4
(SCLK, MISO and MOSI) must be connected to the Raspberry Pi GPIO on the correct pins [3].
The SPI protocol allows several SPI devices to connect in parallel to the same bus (SCLK, MISO
and MOSI), provided they all carry a SS (Slave Select), also called CS (chip select) line. In this
case, the Master will keep the SS line of the sensor with which it wishes to communicate low,
indicating to the other sensors whose SS line is high that they must remain silent. The OPC-N3
slave select line is available through pin 5. This line should be connected to the central computer
SPI CEQ line (Raspberry Pi HAT pin 26). Nevertheless, the use of the SS line with the OPC-N3
has never worked correctly during the Seacanairy development. After personal investigations, it
appears that the SS line of the OPC-N3 must remain connected to the ground. This is explained
in deeper detail in point 2.5.2 on page 34. The Seacanairy software operates the OPC-N3

communications based on the Linux Kernel Python library named spidev [34].

SCLK » SCLK
MOSI > MOSI SPI
SPI MISO [« MISO Slave
Master 551 » S5
5§52
SS3 |
» SCLK
» MOsI SPI
MISO Slave
» SS
—»| SCLK
» MOSI SPI
MISO Slave
> SS

Figure 10 Schématic of the connection of multiple SPI devices to the same Master

Source: Wikipedia, Serial Peripherical Interface [4]

2.3 Software function list

Python software has been written based on the manufacturer's official documentation
and Python libraries documentation to control the sensor from the central computer.
Developing the software required hours of research, either in examples found on the internet or

trial and error. In the end, it handles all the communications, the data verification, the

23

The Sensors of the Seacanairy

conversion of the transmitted bytes into measurements, and the modification of parameters
within the sensor itself. Table 5 list all the functions of the OPC-N3 Python software. Note that
get data() is the final function that does all the necessary operations to get a measurement
(start the fan, the laser, sample, bytes download and conversion, and stop fan and laser). A copy

of the Python file (0PCN3. py) is available in Annexe 6 on page 134.

24

HZS

Table 7

OPCN3.py list of functions

Source own work, with the help of the manufacturer's documentation [2,3]

Function

Goal

Argument

Return

initiate_ transmission
(command byte) !

Initiate SPI transmission to

the OPC-N3

command_byte: byte to be
sent during communication

True when SPI initiation has been done,
False if it failed

First loop on the initiation
manufacturer's flow Chart
fan off () Turn OFF the fan of the None False if it succeeded turning off the fan,
- OPC-N3 True if it failed
fan on() Turn ON the fan of the None True if it succeeded in turning off the
- OPC-N3 fan, False if it failed
laser on() Turn ON the laser of the None True if it succeeded in turning off the
- OPC-N3 laser, False if it failed
laser off () Turn OFF the laser of the None False if it succeeded turning off the
- OPC-N3 laser, True if it failed

read DAC power_ status
(item='all')

Read the status of the Digital
to Analog Converter as well
as the Power Status

Try only one time to read the

item: 'fan', 'laser', fanDAC/,
TaserDAC, 'laser_switch',

'gain', 'auto_gain_toggle', 'all'

DAC power byte, 5 status bytes if
argument is 'all'

checksum

byte(s)

Calculate the CRCS8 data: a list containing an Calculated checksum
digest (data) Checksum with the bytes infinite number of bytes with

received which to calculate the

' Refer to Figure 11 on page 43 for a schematic function flowchart, and point 2.4.1 on page 41 for its explanation.

25

The Sensors of the Seacanairy

Function

Goal

Argument

Return

check (checksum, *data)

Check that the data received
are correct, based on those
data and the checksum given

checksum: checksum sent by
the sensor (the last byte in
any transmission)

data: bytes sent by the
sensor, with which to
calculate the checksum

True if data are corrects, False if they are
not

convert IEEE754 (value)

Join bytes and convert them
to float according to the

IEEE754 encryption

value: a list containing the
two bytes to decrypt

decrypted float

loading bar (name, delay)

Show a loading bar on the
screen for a certain amount
of time. Make the user
understand the software is
doing/waiting for something

name: text to be shown on the
left of the loading bar
(waiting, sampling...)

delay: the amount of time the
system is waiting (seconds)

Nothing

PM reading()

Read the PM bytes only from
the OPC-N3 sensor

Read the data and convert
them in a readable format,
checksum enabled

Does neither start the fan nor
start the laser

Recommended to use
read_histogram() instead of
this function

None

List(PM 1, PM2.5, PM10]

HZS

(flushing time,
sampling time)

function

sampling time: time
(seconds) during which the
laser reads the particulate
matter in the air

Function Goal Argument Return
Get PM measurement from flushing time: time List(PM1, PM2.5, PM10]
OPC-N3 (seconds) during which the
Recommended to use fan runs alone to flush the
getPM get_data() instead of this sensor with fresh air

read histogram
(sampling period) 2

Read all the available data
from the OPC-N3

It first read the histogram to
remove the old data
remaining in the OPCN3
buffer

Then it lets the sensor take
sample during the defined
sampling period

Finally, it read a last time the
histogram data returned by
the sensor

It decodes the bytes returned
into a readable format

It returns everything in a
dictionary

sampling period: the
amount of time (seconds)
during while the fan is
running and the laser is
sampling

Dictionary{"PM 1", "PM 2.5", "PM 10",

"temperature”, "relative humidity", "bin",

"MToF", "sampling time","sample flow

nn

rate",
longTOF", "reject count ratio","reject

reject count glitch", "reject count

count out of range", "fan revolution
count”, "laser status"}

12 Refer to Figure 12 on page 44 for schematic function flowchart, and point 2.4.2 on page 41 for its explanation.

The Sensors of the Seacanairy

Function Goal Argument Return
Get all the possible data from | flushing time: time during | Dictionary{("PM 1", "PM 2.5", "PM 10",
the OPC-N3 sensor which the ventilator is "temperature”, "relative humidity", "bin",
get data Start the fan, flush air during | running without sampling to | "MToF", "sampling time", "sample flow

(flushing time,
sampling_ time)

defined time, start the laser,
sample the air during defined
time, turn off the laser and
the fan

refresh the air inside the
casing

sampling time: time during
which the sensor is sampling

nn

rate", "reject count glitch", "reject count
longTOF", "reject count ratio", "reject
count out of range", "fan revolution
count”, "laser status"}

join bytes(list of bytes)

Join bytes to an integer, from
byte O to byte infinite (right
to the left)

list of bytes: list [bytes
coming from the
spi.readbytes or spi.xfer
functions]

Bytes concatenated to an integer

Set the sensor fan speed speed percent: number Nothing
Reduce fan speed can between O and 100 (0 =
decrease dust deposition in slowest, 100 = fastest)
set_fan speed(speed percent) the sensor casing
The argument in percent,
calibrated from the slowest as
possible to the fastest
Initialize the OPCN3 SPI Nothing Nothing

initialization_ SPI ()

To be executed once after
Seacanairy power up

To be executed on time only
after powering up the

OPCN3

28

HZS

2.4 Software schematic

The flowcharts on the following pages have been drawn up based on the Python software
written previously to allow the correct integration of the OPC-N3 into the Seacanairy framework.
After long hours of working, Python software meets the Seacanairy requirements and operates
the OPC-N3 properly. The purpose of the following flowcharts is to illustrate the different

interactions and processes that occur during the execution of certain functions of the software.

2.4.1 SPI communication initiation

Each communication with the OPC-N3 begins with an initiation loop. First, the central
computer sends a byte on the SPI (called the command byte) to indicate the start of a certain
type of communication to the sensor. Then, the sensor sends back to the central computer
whether it is ready to carry out the asked communication. If the sensor returns that it is busy
(0x31), then the central computer waits ten milliseconds and tries again. This call operation can
be repeated up to 60 times. If even after 60 calls, the sensor is still not ready, then the central
computer Python software considers a communication misunderstanding. Therefore, it waits for
3 seconds, the amount of time required by the sensor to clear its SPI cache after the
communication issue. This is represented by 'cycle' in the diagram. When these two loops have
taken place three times in a row, then the Seacanairy software considers the error to be more

severe and cancels the initial operation. This procedure is shown in Figure 11.

2.4.2 Histogram reading

Figure 12 on page 32 shows all the steps performed by the software to get the histogram
data. In the diagram, the transmission initiation is performed by the
initiate transmission (command byte) function, as explained in point 2.4.1 and shown in
Figure 11. If this initiation process fails, then the histogram reading is cancelled. In order to
receive data from the OPC-N3, the central computer must send bytes on the SPI to the sensor

and simultaneously read its answer (the value of the bytes sent does not matter).

The histogram consists of 85 bytes containing all the data. The 86th byte sent results
from a known calculation made by the sensor with the previous 85 bytes, which is the checksum.
When the central computer has finished reading the 86 bytes, it performs the same calculation
with the 85 bytes transmitted and then compares its answer with the sensor checksum. If the two

values are the same, then it means that the 85 bytes received are correct. However, if the two

29

The Sensors of the Seacanairy

values are different, then it means that one or more data bytes were corrupted during the SPI
transmission. In such a situation, a second reading is therefore necessary. However, each time
the central computer reads the 86 bytes, the OPC-N3 deletes all the measurement related data
and starts counting particles from zero. This also explains why the 86 bytes of the histogram are
read at the start of the histogram reading procedure. However, it also means that if the checksums
are different, the central computer has to wait again for the OPC-N3 to measure the air before
reading a second time. This is the reason why there is a loop in between the second initiate
transmission process and the checksum decision diamond. Note that this feature can be disabled

via the settings file (see page 98).

2.4.3 Perform a particulate matter measurement

Figure 13 indicates the different operations carried out by the get data () function in
order to obtain a histogram from the OPC-N3. If the ventilator fails to start, then the software
will neither start the laser nor read the histogram. Indeed, no measurement is possible without
any air flow in the sampling chamber. Likewise, the central computer will not read the histogram

data if it failed to start the laser.

30

HZS

Initiate
transmission

A 4

Write command byte “j

sensor simultaneously

and read answer from theJ<

What is the sensor

0xF3
answer? *

Other value

h 4

Is th;a(s)egsgor a(r}wg.wer 0x31 Wait 10
, 99 or 07 VL microseconds

Sensor is busy

Increment 'attempts’ communication
can proceed

Initiation done,

Problem with the SS
line, check wiring

Wait 10
milliseconds

r

Increment 'cycle’,

\ .’ [€&——No
reset 'attempts

‘attempts' < 607

Yes

A
Let time to the
» Yes —» Try again ———

sensor SPI buffer > ‘cycle’ < 37?
to reset

No

Indicate error in
sensor SPI initiation

Initiation failed,

communication
cannot proceed

Figure 11 Flowchart of the SPI communication initiation

Source: own work, based on the manufacturer’s documentation [2,3]

31

The Sensors of the Seacanairy

Read histogram

A 4
Initiate
transmission
(command byte =
0x30)

I

True

Cancel histogram
reading

—— False (failure) Indicate error

Read 86 bytes by
sending 86 times
0x00 bytes

Y V¢

[Wait two times tha

amount of time
wished to measure
the air

'seacanairy_settings.yam/' l

Sensor automatically switches from fow to high
------------------------------------- gain, wailing 10 seconds lead to a sampling
period of 5 seconds

Display beautiful
loading line

Initiate
transmission
(command byte =
0x30)
|

True

h 4
Read 86 bytes by
sending 86 times

oL
<

—— False (failure) Indicate error

Cancel histogram
reading

This also has the effect of deleting
all measurement data from sensor
memory.

0x00 bytes

First 85 bytes Last byte is the
contains data checksum calculated by
the sensor

Increment
‘attempts’

Checksums are
identicals?

Calculate checksum
with these bytes

No

Yes

Yes

7 Take another
sample if OPC-N3
checksum is
wrong?

Process the
85 bytes

Create a
dictionnary
containing all the
data

Show data on

screen Take new sample if OPC-N3

checksum is wrong from
'seacanairy_settings.yaml'

Indicate error

Cancel histogram
reading

Figure 12 Flowchart of the histogram reading

End

Source: own work, based on the manufacturer’s documentation [2,3]

32

HZS

Get data End

Start the fan

No Stop the fan

A 4

Did the fan start?

Yes

Let time to the fan to
flush the air inside the

sensor casing
—

h 4

Start the laser

Did the laser start? No ———»| Stop the laser

Yes

\ 4

Read histogram

Figure 13 Flowchart of getting data from the OPC-N3 sensor

Source: own work, based on the sensor manufacturer’s documentation [2,3]

2.5 Faced issues

2.5.1 Simultaneous reading and writing of data

In opposition to the [2C communication explained previously for the CO; sensor, Serial
Protocol Interface and the OPC-N3 use two-way simultaneous communication. This means that
the central computer sends bytes at the same time as others are received from the sensor.
Therefore, writing data with function spi.writebytes () and then reading a certain number
of bytes with function spi.readbytes () does not work because it is imperative to perform
these two actions simultaneously. The only function allowing such operation is spi.xfer (),
which writes the bytes inserted as arguments and returns the bytes received simultaneously. Note

that those functions are provided by the spidev Python library [34].

33

The Sensors of the Seacanairy

2.5.2 Sensor Slave Select line wiring

Pin 5 in Annexe 3 on page 117 is the SS (Slave Select) line. When low, it indicates that
the current communication on the SPI bus is assigned to the OPC-N3. On the other hand, when
this line is high, it tells the sensor to remain silent on the SPI bus. As our central computer
Python library (spidev) is compatible with the use of such a line on GPIO pin 24 (see Annexe
3 on page 117), the OPC-N3 SS line was initially connected through this pin to the central
computer. However, during software development, while initiating SPI communication (as
explained in 2.4.1 on page 29), the OPC-N3 never responded bytes 0xF3 or 0x31 as expected,
but instead the following combinations: [230, 99, 0], or [36, 146, 73]. Long research followed to
find out if the error came from the Raspberry Pi (the central computer used), the Python library
that providing the SPI communications, the wiring of the sensor, or the sensor itself. When
moving to the SS line wiring, it was noticed that the values received during SPI communication
initiation varied. From then on, research focused on the SS line. After many tests, the addition
of resistors, and even diodes, it was discovered that the sensor worked perfectly and reliably when
the SS line remains continuously connected to the ground. Therefore, this discovery goes against
the manufacturer's documentation, which explicitly indicates that the SS line can be left

disconnected [3].

2.5.3 Frequency conflict between the OPC-N3 SPI and the GPS UART

While developing and connecting the GPS receiver (see point 4 on page 45) to the UART
GPIO bus of the central computer, all communication with the OPC-N3 on the SPI bus were
lost. Despite the excellent functioning of the OPC-N3 initiation process, the reading of the 86
histogram bytes gave alternately O and 46. Several tests were achieved out. Firstly, the SPI bus of
the Raspberry Pi was tested by connecting both the MISO and the MOSI of the Raspberry Pi
through a 10 kf2 resistor"’. Then, we wrote a small Python software which had the simple
purpose of sending a series of bytes'* (on the MOSI) while simultaneously reading the received
bytes (on the MISO). This test was successful because all the numbers sent were correctly received
by the Raspberry Pi. So, this means that the Raspberry Pi SPI bus was working correctly.
Secondly, several SPI frequencies were tested, from 300 to 750 kHz (speed range defined by the
manufacturer), but this did not solve the problem [3]. After reflection, the idea arises that the

frequencies of the two buses (UART of the GPS and SPI of OPC-N3) could conflict. Let imagine

1 The resistor allows any damage to the Raspberry Pi due to the short circuit thus formed.
" Asimple spi.xfer ([0, 1, 2, 3..]) from the spidev Python library.

34

HZS

that one bus is operating at a particular frequency while another is operating on another. The
CPU must remain stable on a fixed frequency during the transmission to detect bus rising and
lowering for the communication to work. If the SPI and UART frequencies are not multiple of
each other, then the processor may miss bits on one of these buses. As the UART frequency is
fixed at 9600 by the GPS receiver clock, adaptations should be applied to the SPI communication
frequency of the OPC-N3. The following formula shows the calculation performed in order to

find the used frequency of 307200 Hz. At this frequency, the OPC-N3 usually worked again.
9600 x 31 = 297600 — outside of OPC-N3 working frequency

9600 x 32 = 307200 — inside OPC-N3 working frequency

2.6 Interference between M&C air pump and SPI communication

When adding the M&C air pump to the installation, all communication with the OPC-
N3 were lost. Two hypotheses were exposed: the physical vibrations of the suitcase and the

electrical noise caused by the pump motor. Hereafter is a summary of the tests performed:

e The OPC-N3 has been removed from the case and hold in hands to be isolated
from any physical vibration generated by the pump motor. No improvements

were noticed.

e Le top aluminium plate also suffers from vibrations. The central computer, fixed
on that plate, was detached and held in hands to remain isolated from any

physical vibration. No improvements were noticed.

e The cable provided is formed of six individuals strands. All strands were scotched
together using insulation tape to avoid any cable movement. No improvements

were observed.

e Several power supplies have been tested. Unfortunately, neither the Raspberry Pi
nor the Traco Power 5V 4A power supply helps. Increasing/reducing tension

does not change anything.

e The USB female socket on the OPC-N3 was used as an additional power supply.
An old USB cable was cut to connect only the 5V and the ground cable.

Increasing power supply capacity did not solve the issue.

35

The Sensors of the Seacanairy

36

The power source of the air pump motor was separated from the sensor’s power
supply using two separate 220V cables and plugs. The electric isolation of the

sensors and the motor did not resolve the problem.

Increasing/decreasing SPI frequency does not increase communication
efficiency. Transmitted bytes remains corrupted, and communication keeps

failing.

After disabling the air pump in the software, the OPC-N3 works back again.

If the air pump never stops running, then the OPC-N3 works without any

problem.

The addition of an electric noise filter before the air pump motor improves the

communication efficiency with the sensor.

The addition of a delay between the start of the pump and the first

communication increases the communications' efficiency.

Earthing the aluminium plates do not improve the SPI efficiency.

Removing the Traco power earth connection does not improve the SPI

communications.

Removing the pump motor earth connection does not improve the SPI

communications.

Increasing the 5V cable diameter between the power supply and the central
computer should help to keep a stable 5V. However, no considerable

improvements could be noticed.

A capacitor of 1 Farad (5V) was connected in parallel to the power supply. This

should help the power supply to keep a stable 5V output.

HZS

2.6.1 Isolation of the pump from the 220V line via a noise reducer

Adding a noise filter upstream of the pump power supply has reduced the number of
OPC-N3 errors. The addition of this component is explained in more detail in point O on page

69.

2.6.2 Increasing the power supply capacity

Any DC voltage source (in this case, 5V) has a specific maximum power corresponding
to its maximum current and voltage (P = U X I). Modern voltage sources have an active
regulation system that aims to actively rectify the current to a stable 5V regardless of the current
delivered. However, when the maximum power is reached, the active regulation has no longer
enough power in reserve to keep a stable voltage. Therefore, noise may appear at the output of
the DC source, coming from either the 220V line or the rectifier. Therefore, it is recommended
to install an oversized power supply to stay in the linear zone, the area where the system can
reach the most stable DC output. For that reason, the voltage source supplied with the Raspberry
Pi (central computer computing unit) has been replaced by another more powerful unit (4A
instead of 2.5). As shown in Figure 14, two cables come out of the voltage source: one goes to
the Raspberry Pi, the other a terminal block situated on the printed circuit board. In practice,
the two are already connected via the 40 pins female header of the Raspberry Pi. However, the
thin tracks of the printed circuit may generate some resistance, leading to a loss of voltage across

the central computer [26].

In addition, a 1 Farad capacitor has been added at the output of the voltage source.

Connected in parallel to the 5V DC lines, one loaded, it helps keeping a stable tension.

Figure 14 Power supply of the central computer (Raspberry Pi and printed circuit) and 1 Farat capacitance

Source: own work

37

The Sensors of the Seacanairy

2.6.3 Addition of a rest period between starting the pump and the first
communication with the sensor

Inrush current, also known as Switch-on surge, is the maximum instantaneous current
of an electric motor at the connection to a voltage source. The sudden increase in current
generates a deformation of the 220V sinusoid, leading to waves, resonances and harmonics
oscillating for a certain amount of time in the 220V lines. Those waves can disturb the 5V DC
voltage source, leading to noise propagation to the central computer. Then, the noise spreads to
the SPI clock line. Peaks and valleys on the clock line disrupt the OPC-N3, synchronization
between the central computer and the sensor is lost, and bits are corrupted. This assumption
stands because adding a delay between the start of the electric motor and the first communication

helps troubleshoot the communication issues. Delay should be between 5 and 10 seconds.

3 The 4-AFE gas sensors board from Alphasense

The 4-AFE is a gas sensor holder produced by Alphasense, allowing the easy connection
of four gas sensors and one temperature sensor. The set allows the measurement of nitrogen
dioxide (NO,), ozone (Os), sulphur dioxide (SO,) as well as carbon monoxide (CO). The sensor
is supplied with 5V by a linear voltage power supply to reduce the noise in the measurements as
much as possible. Each sensor returns two analogue voltages (main and auxiliary voltages), which
the central computer's ADC converts into numerical values. Then, the voltages measured can be
converted into gas concentrations through calibration. Table 8 shows all the products required

for using this sensor.

38

HZS

Source: own work, adapted from the Master thesis of Lukas Van der Borght [37]

Table 8 Inventory of the Alphasense gas sensor

No. Piece No. Description Prlce‘per
unit
1 NO2-A43F Alphasense Nitrogen Dioxide electrochemical sensor 48.00
2 OX-A431 Alphasense ozone electrochemical sensor 50.00
3 SO2-A4 Alphasense sulphur dioxide electrochemical sensor 48.00
4 CO-A4 Alphasense carbon monoxide electrochemical sensor 48.00
5 810-0023-00 Alphasense 4-AFE board 152.00
6 000-CBLE-03 Alphasense 4-AFE Board cable board-to-board 10.00
7 PSU30205 Lascar 240V/5V 100 mA linear power supply 40.00
g PLI6ADC Alchemy Power Analogue to D.igital Converter for 50.00
Raspberry Pi
9 C05a-12-ASB1- Valcon Wire-to-Board 2mm Straight PCB IDC ~ 0.50
G Latched Headers '

3.1 Wiring of the 4-AFE board and the Analog to Digital Converter
(ADC)

Figure 15 shows the wiring of the central computer sensor. Note that the 5V Lascar linear

power supply powers all the gas sensors while the ADC is powered by 5V from the Raspberry Pi

via the HAT sockets. For the ADC to measure the voltage on the pins coming from the gas

sensors, the ADC, the sensors and the power supply must share the same ground. Therefore, all

the GNDs in the diagram are connected together [37]. Annexe 3 on page 117 is a schematic

representation of the wiring of the different sensors from the Alphasense sensor board to the

ADC via the PCB.

39

The Sensors of the Seacanairy

Printed Circuit Board

4-AFE Board ; Socket/Cable E ADGC
OP1 » Ch8
SN1
NO- :
0OP2 ' » Chd
OP3 » Ch7
SN2
03 + N02 :
OP4 ; » Ch3

| PHO00+- [— > Chs

OPS5 I » Chd
SN3 =
SO,

H][H

Hﬂ

oPs ; » Ch2

£ L2 Je]ll]

(=}

OP7 hi

SN4
co

() ()

oPs X » Chi

3 | :
3 5V linear [€—
: ! sV

. Linear Power
Ground L\ T Supply

Figure 15 Schematic representation of the Alphasense 4-AFE wiring

Source: own work, using draw.io

3.2 Software function list

A Python code has been written to measure the electrical voltages from gas sensors via
the Central computer’s Analog to Digital Converter (ADC). The software code (AFE.py,
available in Annexe 7 on page 154) is an improved copy of the code written by Lukas Van der

Borght for his Master thesis [37]. Table 7 is a list of all the software functions.

40

HZS

Table 9 OPCN3.py list of functions

Source own work, some part of code coming from Lukas Van der Borght’s thesis master [37]

Function Goal Argument Return
Read tension from the ADC on a certain channel | adc_address: slave i2¢ Tension between
getADCreading address channel and
(adc_address, adc_channel) adc_channel: channel where | ground (volts)
to read tension
Measure tension of the temperature sensor None Dictionary
get temp () (Note that the sensor is not located in the gas containing tension
- hood.) in milli volts
{'temperature raw'}
Measure tension of NO2 main and auxiliary None Dictionary
get NO2 () electrodes containing tensions
- in milli volts {NO2
main', ' NO2 aux'}
Measure tension of OX main and auxiliary None Dictionary
get OX() electrodes containing tensions
- in milli volts {'OX
main', 'OX aux'}
Measure tension of SO2 main and auxiliary None Dictionary
get S02() electrodes containing tensions
- in milli volts {'SO2
main', 'SO2 aux'}
Measure tension of CO main and auxiliary None Dictionary
get CO() electrodes containing tensions
- in milli volts {'CO
main', 'CO aux'}

41

The Sensors of the Seacanairy

Function

Goal

Argument

Return

apply calibration(dictionary)

Apply calibration to the tensions measured before

[Not yet finished]

dictionary: dictionary
containing tensions from
other functions

Initial dictionary
with ppm
concentration
added {NO2 ppm/,
'OX ppm', 'SO2
ppm’, 'CO ppm,
'temperature'}

get data()

Get all available data from the 4-AFE Alphasense

Board (one single instantaneous reading)

None

Dictionary{'NO2
ppm', NO2 main',
'NO2 aux', 'OX
ppm’, 'OX main',
'OX aux', 'SO2
ppm', 'SO2 main',
'SO2 aux', 'CO
ppm’, 'CO main',
'CO aux,

'temperature’,
'temperature raw'}
Perform multiple readings and makes an average number of measurements: | Dictionary{'NO2
Run get averaged data () once thread is number of measurement to main', 'NO2 aux',
. finished to get the data average, each single 'OX main', 'OX
e Improved for threading application (no display measurement taking around | aux','SO2 main',
- prints) 2 seconds 'SO2 aux', 'CO

main', 'CO aux/,
'temperature raw'}

42

HZS

Function

Goal

Argument

Return

start background _
average measurement
(number of measurements,
delay=0)

Start a new thread to perform averaged reading in
the background

Run get averaged data () once the thread is
finished to get the data

thread =

threading. Thread(target=AFE.start_averaged_data,
args=([number_of_measurements, delay]),
daemon=True) in your own code is preferred

number of measurements:

number of measurements to
average, each single
measurement taking around
2 seconds

delay: amount of time in
between the start of the
thread and the start of the
sampling operation

Nothing

43

The Sensors of the Seacanairy

Function Goal Argument Return
Read the data of the last None dictionary{'NO2
start averaged data () (or ppm', NO2 main',
start background average measurement ()) 'NO2 aux', 'NO2

get averaged data()

performed

main max', NO2
main min', NO2
aux max', 'NO2 aux
min', 'OX ppm/,
'OX main', 'OX
aux', 'OX main
max’, 'OX main
min', 'OX aux max',
'OX aux min', 'SO2
ppm’, 'SO2 main',
'SO2 aux', 'SO2
main max', 'SO2
main min', 'SO2
aux max', 'SO2 aux
min', 'CO ppm',
'CO main', 'CO
aux', 'CO main
max, 'CO main
min', 'CO aux
max’, 'CO aux
min', 'temperature',
'temperature raw'}

44

3.3 Analogic signal noise reduction

Previous research performed by Lukas Van der Borght on the 4-AFE board shows that
there is some noise on the analogue signal [37]. In order to reduce this noise, a function has
been added to the Python software. Function
start averaged data (number of measurements) takes several successive measurements of
the five sensors and then calculated the average. The function also returns the minimum and
maximum value read to get an idea of the margin of error. As this operation takes around two
seconds for each reading loop, the function has been written so that it can run silent in the
background in a separated Python thread, allowing the central computer to perform other tasks
simultaneously. A second function is necessary to retrieve measurements taken in the
background. In Conclusion, start averaged data(number of measurements) takes
multiple measurements and calculates an average, while get averaged data() returns the
results of the last averaged measurement. Note that the number of successive measurements

taken can be adapted in the Seacanairy settings file (see point 3 on page 98).

3.4 Calibration

The calibration from Lukas Van der Borght has been added to the software [37]. That
way, the systems performs the necessary calculations to convert the tensions from the gas sensors
in millivolts to concentrations in ppb. Files containing the calibration settings is shown in Figure

72 on page 109, and an example of this file is available in Annexe 12 on page 192.

4 The GPS receiver

It has been shown that the speed of a ship has a considerable influence on air pollution
measurements taken on board. As part of the design of an instrument for measuring air pollution
optimized for use on a ship, it is interesting to relate gas and particulate matter measurements
with ship speed and position simultaneously. For this purpose, a GPS received has been
connected to the central computer. It consists of the sensor board VMA430 manufactured by

Velleman in which the receiver U-BLOX NEO-7M is incorporated.

45

The Sensors of the Seacanairy

Figure 16 Velleman VMA430 and U-BLOX NEO-7M chip

Source: own pictures

4.1 Wiring of the GPS receiver

Unlike the other sensors explained previously in this paper, the GPS receiver uses UART
(Universal Asynchronous Receiver Transmitter) communication. This communication protocol
is made possible by two wires only: the TX (the line on which the data goes out) and the RX (the
line on which the data enters). Unlike the SPI and 12C ports, there is no clock synchronizing
communications, and there is neither Master nor Slave. Therefore, both devices must transfer
their data at the same speed, 9600 baud rate, in the case of the GPS receiver. Annexe 3 on page
117 shows the wiring from the GPS receiver to the host computer. The RX pins are connected
to the TXs, and the TXs are connected to the RXs. The PPS (time pulse) is the pulse at which

the GPS receiver sends location data. This line is not necessary.

4.2 Software function list

The process for obtaining the position data from the GPS is much more straightforward
than the other sensors explained previously. Therefore, there is only one important function.
Table 10 indicates the function and what it returns. A copy of the code is available in Annexe 8
on page 168. Note that the software written could also work with other GPS receivers than the

one used as long as their data are structured in the same way (NMEA 180") and work with

UART.

Table 10 GPS.py function list

Source: own work

15 Standard for communicating position, heading, speed and time data via several lines of text, whose numerical
data is separated by commas.

46

HZS

Function Goal Argument Return
Read position | None Dictionary{fix time, fix date, fix date and
data from the time, latitude, longitude, SOG, COG,
get position() | GPS receiver status, horizontal precision, altitude,
WGS84 correction, current time, accuracy,
fix status}

4.3 Faced issues

4.3.1 Frequency conflict between the OPC-N3 SPI and the GPS UART

The addition of the GPS receiver and the activation of the UART port interfered with
the proper functioning of the OPC-N3. After some extensive research, the hypothesis emerged

of a conflict between the frequencies of the SPI port of the OPC-N3 and the UART port of the

GPS receiver. This problem and its solution are explained in point 2.5.3 on page 34.

4.3.2 Random UART port opening problem

After resolving the conflict issue between the SPI port and UART port, another issue
appeared. Randomly, the Python software fails to activate the UART port. Since it cannot be

started, it is therefore impossible to read the data from the GPS receiver.

The Raspberry Pi 3B + has two UART ports. The first one is the PLO11. This port is
controlled by an independent chip and is therefore neither influenced by the CPU workload
nor its frequency. The PLO11 is, therefore, more stable, more reliable, and performs better in
the background. The second UART port is called the miniUART, a virtual port directly
connected to the CPU, accessible from the Raspberry Pi purchase via the GPIOs (pin 8 and 10).
Therefore, a variation in the frequency of the processor has a direct influence on the miniUART
behaviour. Remember that the communication protocol is asynchronous and that there is no
clock line between the devices connected to that bus. Devices are therefore supposed to
communicate at a constant and stable frequency. Therefore, a slight variation in the CPU
frequency can disrupt the miniUART and consequently induce corruption or loss of data.
Initially, the Raspberry Pi's Bluetooth is connected to the PLO11, so Raspberry Pi users are
supposed to use the miniUART for their electronic projects. However, when the Raspberry Pi
workload increases (internet, TeamViewer, the addition of sensors activation of multiple
communication protocols), the miniUART is no longer accurate enough. Therefore, it is

necessary to apply changes in the Raspberry Pi operating system to deactivate the Bluetooth and

divert the PLO11 on the GPIO pins [21,22,28,35].

47

The Sensors of the Seacanairy

Before making any changes to the Raspberry Pi file system, it is better to back up the
whole SD card, using Win32 Disk Imager. In this way, if we were to miss a step and the Raspberry
Pi no longer starts, we can put the backup back on the SD card and start over on the old

configuration.

e Start by executing the display command that lists the Raspberry Pi's various ports:
1s -1 /dev*. In the list, if serialo fit with tty0, then it means that Bluetooth
is connected to PLO11. Then the further steps must be applied. If serial0 go
with ttyAMAO, then it means that PLO11 is already connected to the GPIO and

that no further steps are necessary [21].

* \ :] E—-][Team\.f'ie'u\fer] [boot] =)E ? 18:28

Fichier Edition Onglets Aide

9 raml
ramle
ramll
raml2
raml3
raml4
ramls
ram2 (:]
ram3
ramd
rams
ramé
ram7
ramsg
ram9
random

FRRERRERHERRRERERRBRRRR

rfkill
serial® -> ttySe
seriall -> ttyAMA®

HFRENRERRERHERRRRBR R R B RR
=

spideve.@

spideve.1

stderr -

stdin

stdout - roc/self/fd/1
tty

4,

4,

4
.

Figure 17 Is - eV* on Raspberry Pi, UART configuration

Source: own work
e Open a new terminal and type the function: sudo nano /boot/config.txt.
After execution, a nano GNU will open. Scroll to the bottom of the file and add
dtoverlay=pi3-disable bt. The addition of comments as done in Figure 18
helps keeping a track in the system modifications. Finally, to save and exit the
nano GNU, press on ctrl+x, then press enter and 0 (do not confuse the letter

with the number zero) [21].

48

HZS

i I /I [TeamViewer} boot T_ R = 1822

Fichier Edition Onglets Aide
GNU nano 3.2

config.txt Modifie

@ Ecrire
Wi Lire fich

Figure 18 Switching UARTS on the Raspberry Pi (config.txt)

Source: own work
e Open a new terminal and execute the following function:
sudo nano /boot/cmdline.txt. Remove from the file the following:
console=serial0,115200. Close nano GNU by pressing ctrl+x, then enter

and 0 (do not confuse the letter with the number zero) [21].

e Disable the Bluetooth UART service by executing the following command:
sudo systemctl disable hciuart.A message should then indicate the service

deactivation [21].

e Restart the Raspberry Pi. After boot, check that both UARTs has been well
swiped. Open a new terminal and execute 1s -1 /dev*. Now, serial0 should

be ttyamao. If it is not the case, then reboot again [21].

5 Sensirion Mass Flow Meter

The flow sensor uses the 12C protocol as the CO; sensor. The technical specificities of
the communication protocol have already been explained in point 1.1 on page 5. By measuring
only one parameter, the air flow, the use of this sensor is much easier. No problem was
encountered. The Python code for the use of this sensor can be found in Annexe 9 on page 176,

and the diagram of the electrical connections is in Annexe 3 on page 117.

49

The Sensors of the Seacanairy

6 The RTC (real-time clock) - DS3231

When the central computer gets out of power, it lost track of time and restarts on January
1, 2000. Indeed, the Raspberry Pi has been designed to stay connected to the internet, where it
synchronizes to server time over the cloud. However, for the Seacanairy to link the measurement
with the time and date, a Real-Time Clock must be connected to the central computer. The
module used is the DS3231. The sensor works via [2C communication. The RTC wiring is shown

in Annexe 3 on page 117. Pin 1 fits with the pin at the bottom of Figure 19.

Figure 19 RTC DS3231 chip

Source: own picture

6.1 Faced issues

6.1.1 I*C pullup resistors

When adding the RTC and the Sensirion Mass Flow Meter to the Seacanairy, the central
computer lost communication with the CO; sensor. The cause is the excess of resistors connected
in parallel to the I2C bus. As explained in point 1.6.2 on page 17, the RTC has its own welded
pull-up resistors. However, these resistors are already introduced by another sensor connected to
the same bus, and the resistances of the RTC are therefore in excess. Therefore, they should be

removed. Notice that in Figure 19, two resistors have been unsoldered at one of their ends.

6.1.2 Integration on the PCB

During the design of the PCB (version 2.0), the pin order was reversed. It induced the
connection of the RTC in the other direction, hindering the connection of the CO; sensor. To
avoid ordering a new circuit board, the female connection of the RTC has been unsoldered and
resoldered on the other side. That way, the connexion of both the RTC and the CO; sensor is
possible. Figure 20 shows the normal shape on the left and the modification on the right. Version
3.0 of the PCB resolves this error (see Annexe 4 on page 119 for a schematic of the two different

versions).

50

HZS

Figure 20 Relocation of the DS3231 socket to solve the PCB design problem

Source: own work

51

Chapter 2
Combining components into
a measuring device

This chapter focuses on connecting all the components (explained in detail in the earlier
chapter) to create one instrument. Sensors are interconnected in diverse ways. Firstly, a tube
connects all the sensors in series, and a pump pushes a controlled amount of air through the
sensors. Secondly, sensors are connected according to their specific wiring characteristics to the
central computer via a custom motherboard. Finally, there is a physical connection between the

sampling instrument and the suitcase.

53

Combining components into a measuring device

Figure 21 The case of the Seacanairy

Source: own work

1 Building the device into a transportable suitcase

The goal of the Seacanairy was to develop a measuring device inside a suitcase so that it
is portable and can be used in maritime conditions. This means that the measuring system must
be incorporated into an impact resistant box that is watertight and easily transportable. For this,
a yellow-coloured Pelican Storm Case iM2720 was selected. The case has an O-ring sealing that
protects the instruments from water jets, and the plastic is impact resistant. It is large enough
(55.9 cm x 43.2 cm x 25.4 cm) for future improvements. Instruments are fixed on three

aluminium plates installed in the casing. Table I shows the required components.

54

HZS

Table 11 Inventory of the components needed to build the casing

Source: own work

. . Price :)
No. | Supplier | Piece No. Name A— Quantity | Price
1 iM2720 Peh;;g itzgf; S;S; Ki‘)w’ 306.50 1 306.50
Bezel-Kit Lid iM27XX for
Pelican , Peli Storm Case iM2700
2 ‘I‘gégf iM2720 iM2750 95.78 2 191.56
The frame on which the lid and
top plates are placed.
John Raw and shiny aluminium,
3 Steel filmed, 2 mm thickness 3 106.08
Case Panels'®
4 Screws to fix the frames to 8
M5 the case
Autoblocking nuts 8
5 M4 Screws to fix théf top and lid 168
plates to their frames
Screws to fix the bottom
6 4 e
plate to the case =
Clabots'’ Autoblocking nuts 8 %E
M6 Washers 20
Placed inside the case to divide 4
the load from the bold on the
plastic
Watertight gaskets
7 Tighten screws fixing bottom 4
plate, placed outside of the case

16 See Annexe 2 on page 85 for their schematics.
17 Local do-ityourself supplier.
18 The number of screws also depends on the accuracy of the drillings position.

55

Combining components into a measuring device

Figure 22 Pelican Storm Case iM2720 before/after
Source: Waterproof Cases [25] (left), own work (right)

1.1 Three aluminium plates in the casing

Three aluminium plates must be fixed in the casing using frames and screws to install all

the components in the case. In that way, the case contains three levels of aluminium plates.

1.2 The bottom plate

The bottom plate is fixed on four M6 bolts fixed through the bottom of the case. Bolts
are fitted with anti-vibration screws and watertight washers (see Figure 23 on page 57). The
dimensions of the plate can be found in Figure 74 on page 116. The following components are
fixed to the bottom plate: the M&C air pump, the 220V electricity junction box, a 220V plug,
the 220V noise filter, the particulate matter sensor (OPC-N3), and the air filter (see Figure 24
on page 57). Components have been disposed to keep some free space for further improvements.

Also, the layout must be thought out so that no component touches each other when closing.

56

HZS

Figure 23 Bottom plate fixing bolts (and the four bolts)

Source: own work

Figure 24 Picture of the bottom plate and its components

Source: own work

1.3 The cover plate in the case lid

The cover plate is placed on a frame via four M4 bolts (see point 1.5 on page 58
concerning drilling), and the frame is fixed into the lid with twenty rivets. All holes made inside
the case are waterproof via rubbered washers included in the bezel kit's purchased package. Cover
plates hold the touchscreen and the GPS receiver (see Figure 25). A cut-out on the hinge side
plate allows cables to pass from the lower part to the upper part. Dimensions of the aluminium

plate can be found in Annexe 2 on page 115.

57

Combining components into a measuring device

B R EE

Figure 25 Cover plate (in the case lid), back and front side

Source: own work

1.4 The top plate

The top plate is placed on a frame via four M4 bolts (see point 1.5 concerning drilling),
and the frame is fixed to the case via eight M5 bolts. That way, the frame can be detached if
necessary. All holes made inside the case are waterproof via rubbered washers included in the
bezel kit's purchased package. Dimensions of the aluminium plate can be found in Annexe 2 on
page 115. The top frame contains on the front a USB and ethernet plug connected to the central
computer. The backside contains all the sensors and electronical components, such as the central
computer, the Linear 5V transformer, the CO; sensor, the Alphasense 4-AFE Gas sensor, and
the Sensirion Mass Flow Meter. A cut-out on the hinge side plate allows cables to pass from the

lower to the upper.

Figure 26 Top plate, back and front side

Source: own work

1.5 Drilling the plate to fix it on the frame

Since the suitcase is not perfectly rectangular, the size of the frame must be able to adapt
to match the shape of the suitcase according to the desired height. This flexibility is achieved via

the plastic sliding corners. Before drilling the holes in the plate, you must first position the frame

58

HZS

at the desired height, slide the corners so that the frame fits the shape of the suitcase, then
remove the frame without changing the frame dimensions, and then drill the holes in the right
places. Improper execution of this step leads to a deformation of the frame when tightening the

frame fixing bolts and an offset between the holes in the frame and the holes drilled.

2 Connecting all sensors with tubes

In order to protect the sensors from the external environment and enable them to be
calibrated, the external air to be measured must be conveyed to the sensors by means of tubes
and a pump. The air is therefore forced to pass in series from one sensor to another. Therefore,
in the next step, it will be possible to connect the measuring instrument to calibration gas

cylinders to calibrate everything.

The Seacanairy is crossed by a tube in which circulates the air to be measured. This tube
connects all the sensors in series (see Figure 24 on page 57), meaning that the same air passes
from one sensor to another. As the sensors are not designed to be connected to a tube, they have
been positioned in small tights boxes connected to the tube. At each tube intersection, there is
a connector that allows the tightest possible junction between the tube and the box. This allows
a pump to be located at the end of the line and to generate an airflow in the piping system.
Figure 28 is a picture of the piping system of the Seacanairy, and Table 12 indicates all the
components necessary to build a similar piping system. The order in which the sensors, pumps
and filters were connected was decided as a result of the following thought. The most sensitive
sensor in this project is the OPC-N3 due to its laser and air illumination system (more detailed
explanation on page 19 at point 2). Particulate matter can stick along the tube's walls and
accumulates behind junctions and other bends [2]. Therefore, the sensor tube must be as short
and straight as possible to minimise the tube-induced error. On the other hand, the box
containing the sensor does not support pressure. Therefore, it should be located on the suction
side of the pump, and the vacuum will keep the box well closed and tight. The M&C pump has
some ability to suck and blow air. The OPC-N3 and the filter were placed before the pump for
the reasons explained above. In order not to overload the pump on the suction side (before the

pump), the remaining sensors were positioned on the pressure side (after the pump).

59

Combining components into a measuring device

Seacanairy
Alrin _ . Gas sensor | Airout
CO; +T° + RH% |
) Parhcolgag?Nl\gaﬂer. NN \ 2E oo ° F'g:’n:je;;‘r?r —»| Alphasense 4- |———%
P AFE Board |

Figure 27 Schematic of the inboard piping system

Source: own work, using draw.io

Figure 28 Picture of the piping system inside the Pelican case
Source: own work
Following goals were expected while designing the sampling system. Firstly, all the sensors
must be kept protected from any physical impact and water splashes. This is guaranteed by the
Pelican Case and watertight cable glands. Moreover, all the sensors must be connected to the
same piping system. It is expected that they all measure the same air at the exact moment. Then,
the piping system must be as gas-tight as possible to avoid any gas leakage and distortion in the
measurements. Finally, the air volume inside the whole piping system must be as small as possible

for better calibration. That way, the calibration process would require less calibration gas.

60

HZS

Source: own work

Table 12 Inventory of the piping system

No.

Supplier

Piece No.

Name

Price
per unit

Quantity

Price

M&C

02B1000

PTFE tube, DN 4/6

Sampling tube, internal diameter
4 mm, external diameter 6 mm

10.20

10 m”

102

10T1000

Hose cutter
Hose cutter designed for precise
perpendicular tube cuts

22.70

22.70

05V1060

GE PVDF DN 4/6 - G 1/4"
Connector from 4,6 tube to male
screw type G size 4"

Used for connecting the pump,
the filter, and the CO; sensor to
the piping

11.30

90.40

05P1010

MP-F 05 R, 230V
Bellow sampling pump, 320
NL/h, PTFE, needle valve

971.00

971.00

05P1050

Mounting bracket for MP-F
Support for the pump with anti-
vibration pads

59.00

59.00

01F2200

FT-2T
Filter for universal gas sampling
use

490.00

490.00

90F0002

Filter element F-2T
Compatible spare filter

27.70

27,70

Swagelok

SS-6MO-
61

Stainless Steel Swagelok Tube
Fitting, Bulkhead Union, 6
mm Tube OD
Case Inlet and Outlet
connections, OPC-N3 box

connectors

SS-8MO-6-
6M

Stainless Steel Swagelok Tube
Fitting, Reducing Union, 8
mm x 6 mm Tube OD
8 mm outer diameter to 6 mm
outer diameter tube converter

Used in the OPC-N3 box

10

11

Brico®

Small cylindric electric junction

box for the CO; sensor box

Junction box electric connection
gland and their screws

' This is the minimum length upon purchase.
2 Local do-ityourself supplier.

61

Combining components into a measuring device

Supplier

Piece No.

Name

Price
per unit

Quantity

Price

M3 threaded rods and their
washers and bolts
12 For pulling the OPC-N3 sensor 4
against a Swagelok connector and
a gasket
Teflon tape

13 1.99 1 1.99

To improve air system sealings

Lunch box
. 20
13 | Traffic OPCN3 box 3.00 1 3.00

2.1.1 The use of PTFE tubes

An essential characteristic in the design is the tube material. Reactive gases can be
absorbed by the piping material, the sensor housing, and the adapters, giving inaccurate low
readings and an increased response time’'. It is why some provisions should be taken while

working with any piping or housing system [7].

Different materials are currently in use for gas sampling devices such as tubes, pumps,
sensor housings, valves, and elbows. A popular material is PTFE (polytetrafluoroethylene), which
belongs to the material type known as Teflon. The polymer is hydrophobic* and has a low
friction coefficient. PTFE is used in many applications that require high temperature, chemical
resistance and low friction, such as wiring insulation, high-temperature protection, coating of
non-stick pans, and lubrification [27]. PTFE mostly has a milky/white appearance. The second
material often used in gas sampling applications is FEP (fluorinated ethylene propylene). FEP is
chemically speaking similar to PTFE, except for its transparency and thermal resistance [12]. A
last alternative material is Tygon (Saint-Gobain). It is a brand name to a large polymer tubing
family. Some of them are composed of multiple layers of proprietary composition. Tygon is often
used in the chemical industry, in laboratories and in pharmaceutical [29]. Some tubes are

resistant to any chemical product, either gaseous, liquid or slurry [30].

In 2008, the Health and Safety Laboratory held a study for the Health and Safety
Executive (English parliament) concerning the effect of tubing materials on gas detectors and
sampling systems. Using gas detectors, different tubes materials, and tube diameters, they

measured the delay between a change in gas concentration at the inlet of the tube and its

2 Amount of time between an event and its detection.
22 Which is not attracted by water.

62

HZS

detection at the end. They tested PTFE, FEP and Tygon tubes with Hydrogen Sulphide (H,S),
Nitrogen Dioxide (N0,), Nitric Oxide (NO) and Toluene (C,Hg). Their recommendations are

summarized below [7].

e PTFE and FEP can be used with minimal effect when sampling H,S, NO and
NO, [7].

e Tygon may be used when sampling H,S, NO and NO, if PTFE and FEP are not
available providing the delay time is not an issue, but the tube dimensions must
be as small as practically possible without restricting the flow rate of the sampling

instrument [7].

e Tygon is not suitable for use in sampling C;Hg but PTFE and FEP may be used

providing the delay time is not an issue [7].

e Taking into account the previous findings and the principal supplier catalogue

(see Table 12 on page 61), it was decided to use PTFE pipings.

2.1.2 Air pump

As long as all the sensors are connected in sealed tubes, an air pump is necessary in order

to circulate the outside air through all the collectors.

The air pump used (article 5 in Table 12 on page 61) was purchased at M&C. Its nominal
flow rate is 5 slm (standard litre per minute”), which corresponds to the air volume required by
the OPC-N3 (particulate matter sensor). The 220V motor rotates a crankshaft converting the
rotary motion into a reciprocating motion operating a PTFE bellow. For easier mounting inside
the case, the pump head has been rotated** 90° to reduce its height. This pump contains only
one bellow and is therefore single-acting: no air enters when air exits, and vice versa. As a result,
the movement of the air is jerky, leading to some troubles for some sensors. The screw protruding
from the side of the pump activates a bypass valve (or needle valve - see Figure 30) in order to

regulate the airflow. The pump is supplied with a mounting bracket and four anti-vibration bolts

(article 6 in Table 12 on page 61).

3 Gas flowrate in standard temperature and pressure conditions (0°C, 1 bara).
¥ During this step, be sure to keep the pump head tight against the motor. Otherwise, the crankshaft and the
bellows pump are no longer in the same plane, risking damage to them.

63

Combining components into a measuring device

Figure 29 Air pump in its initial situation (on the left), unbolted, and rotated (on the right)

Source: own work

Figure 30 Operation of the needle valve of the M&C air pump
Source: M&EC MP-FO5/R instruction manual [20]

2.1.3 The particulate matter sensor (OPC-N3) box

The design of the OPC-N3 does not facilitate the connection to the tube system.
However, it is provided with a seal around its air intake with four threads. This makes it possible
to compress a 6mm diameter “through bulkhead” Swagelok connector against the OPC-N3
gasket. Unfortunately, all electrical junction boxes found on the market were a few millimetres
too small in height to place the OPC-N3 in the same way as the CO; sensor (see 2.1.3 on page
64). This is the reason why a less robust box had to be used. Figure 35 shows how the tight
connection to the OPC-N3 is performed, and Figure 31 shows how the cylindric box is fixed to

the case panel.

64

HZS

Figure 31 The OPC-N3 box
Source: own work

A Swagelok connector (article 9 in Table 12 on page 61) is compressed between the box
and the OPC-N3 gasket via four threaded rods. The air leaving the sensor then ends up in the
box and is then sucked through another Swagelok connector to the pump. Connections are

sealed with Teflon, insulating tape and hot glue.

Figure 32 Connection of the tube system to the OPC-N3 via a Swagelok connector and four threaded rods
Source: own work

Finally, the sensor is fixed as close as possible and in line with the air intake to avoid any
disturbance of the measurements caused by the potential accumulation of fine particles on the
walls and the tubes' roughness. Finally, a mounting bracket was crafted from the remaining
aluminium plates from the touchscreen cut-out. Figure 33 shows the OPC-N3 in its final

position.

65

Combining components into a measuring device

Figure 33 Fixing the OPC-N3 box to the bottom case panel

Source: own work
Due to its operation by means of a bellows and a crankshaft, the air pump generates a
jerky airflow (see point 2.1.1 on page 62). The OPCN3, using laser scattering to detect
particulates, requires the most regular airflow possible. It is believed that the cover flexibility of
the sensor box would absorb part of the air vibrations. In addition, placing the filter between the

pump and the OPC-N3 helps to stabilize the airflow.

2.1.4 The CO; sensor box

The shape of the CO2 sensor is absolutely not suitable for connecting a pipe system. For

this reason, the sensor was placed in a small enclosure.

The CO; sensor has been placed in a small electrical junction box. The connection with
the pipe system is made via an M&C PTFE connector (article 3 in Table 12 on page 61) which
has been milled to fit into an electric gland cable (see Figure 35). In this way, the connector is
clamped in the cable gland in the same way as an electric cable would have been. To increase the
seal, Teflon has been added between the box and the cable gland. The electric cable passes
through a plug initially designed to close the perforations of junction boxes. Instead, the plug

was perforated, the cable passed and then sealed with hot glue.

66

HZS

Figure 34 The CO; box

Source: own work

Y bt i

Figure 35 Shaping of the M&C connector and assembly of waterproof connectors

Source: own work

2.1.5 The Sensirion mass flow meter

The jerky movement of the air dramatically alters the flow rate readings by the flow
sensor, which should therefore be placed in the same way as the OPC-N3 (see point 2.1.3). Since
the flow sensor has been designed for medical purposes and pure air sampling, it has to be placed
after the filter to prevent fouling the measuring cell and the internal filter. The problem of air
fluctuation can be solved via the software by taking the average of several successive

measurements.

2.1.6 The Alphasense 4-AFE gas sensor

Gas sensors have been located at the end of the tube on the pressure side because they

are not sensitive to airflow vibrations in opposition to the other sensors discussed above.

2.2 The electrical connection of all hardware components

The central computer and the air pump must be connected to a 220V AC source to

operate. At the same time, several components such as the ADC and sensors must be connected

67

Combining components into a measuring device

with each other and to power supplies of 5 VDC. All these connections require many wires, and
this introduced errors (bad or unstable connections, moving wires generate noise) For that
reason, a PCB board was designed that replaces most of the wires. At the same time, the power
supplies must generate a stable voltage without any noise on the line. A maximum of connections
was made in a junction box using Wago type connectors (article no. 5). A female connector
(article no. 2) to be screwed into the Seacanairy male plug (article no. 3) provides the 220V

supply. Articles can be found in Table 13.

Table 13 Electrical connections for power supply

Source: own work

Price
No. Supplier Reference Name per Quantity Price
unit

2 phase 1 earth +

1 Cebeo plug cable, 3m | 8.27 1 8.27
Wavre

length

Hirschmann
Cable Mount
934125100 | Connector, 3 +
CA3 LD PE Contacts
220V connector,
RS cable side
Components Hirschmann
Flange Mount
932322100 | Connector, 3 +
CA 3GS PE Contacts
220V connector,
Seacanairy side
4 Junction box 1 Negligible
Wago 5 way

10.78 1 10.78

4.33 1 433

Brico CcoONNectors
> Connect 220V 4 6.19
wires
220V one strand

electric wire 5m ground, 5m
Pull cables between blue, 5m bruin
components
Traco power
TPC-030-105
Supply 5V (max
4A) to the
Raspberry Pi and

the sensors

6 Cebeo 8.27

1 Unknown

68

HZS

Price
No. Supplier Reference Name per Quantity Price
unit

Tokin noise
filter LF205A
250V 5A
8 Electrically isolate 1
the M&C air
pump to the other
components
Lugs
Earth the
aluminium plates,

9 and make the

2 rounded
5 female

ti th .
connection of the disconnects [5]

pump to the
TOKIN noise
filter

Figure 36 Picture of the 220V derivation box (on the left), and the Tokin noise filter (on the right)

Source: own work

2.2.1 Electric noise on the 220V line

As explained in point 2.1.1 on page 62, the pump generates some electrical noise when
running, which interferes with the proper functioning of the OPC-N3. The problem was solved
by connecting a noise filter (article 8) between the pump and the 220V power supply. The relay
operated by the central computer has been positioned upstream of the filter so as to prevent it
from being permanently under voltage. The connections are made by means of female lugs
(article 9), protected by heatshrink tubing. A schematic of the connections is to be found in
Figure 37 as well as in Annexe 3 on page 117. Do not confuse the line side (voltage source) with

the load side (pump).

69

Combining components into a measuring device

Relay
o

<}
5 Tokin Noise Filter

Figure 37 Schematic of the wiring of the Tokin noise filter on the M&C air pump

Load

components...
220V bus

Source: own work, using draw.io

3 Central computer

The central computer is composed of three main parts: the Raspberry Pi (the computing
unit), the analogue to digital converter, and the custom printed circuit board, making possible
the connection of those two parts to the various sensors. Those three components are compatible

with HAT (hardware on top) and form a single unit, as shown in Figure 38.

Figure 38 Central computer unit (from bottom to top: Raspberry Pi, Pi16-ADC, custom printed circuit board)

Source: own work

3.1 The Raspberry Pi

A central computer manages the Seacanairy measuring system. The device used is a
Raspberry Pi 3B+. It is a single piece nano-computer from the ARM family designed for do-it-
yourself electronics. The computer is equipped with an Ethernet connection, Wi-Fi, Bluetooth,
four USB, audio 3.5 mm jack, CSI camera interface, DSI connector for the official screen, a
MicroSD socket for storage, and HDMI. These are standard functionalities that can be found

on any recent computer. In addition, the Raspberry Pi has two connector rows, each with 20

70

HZS

pins that are directly linked to the BCM2837 chipset. Those General Purpose Input/Output
(GPIO) can be used as input or output to communicate with any device or sensor, either
controlled manually by any selfmade software or automatically using designated pinout for

particular purposes [19].

3.2 The Analog to Digital Converter

The Raspberry Pi can communicate with digital sensors but cannot process any analogue
signals. Therefore, an Analog to Digital Converter is necessary in between the gas sensor and the
Raspberry Pi. The device used is the PI-16ADC from Alchemy Power. It provides a 16-bits
conversion, which leads to a reading accuracy of 38.1 microvolts [1]. In addition, it is compatible
with a HAT add-on board, as the ADC, that can easily be plugged on top of the Raspberry Pi,

forming a single unit with the Raspberry Pi.

Table 14 Inventory of the Central Computer

Source: own work, Master thesis of Lukas Van der Borght [37]

No. Piece No. Name Quantity Price

1 Raspberry Pi 3B+ Raspberry Pi 3B+ 1 50.00
Alchemy Power .

2 PLI6ADC Analogue to Digital Converter 1 50.00

Custom Printed Circuit Board By two units | 53.36

Figure 39 Picture of the Raspberry Pi 3B+ (on the left) and the PI-16ADC (on the right)

Source: Raspberry Pi website [19] and Alchemy Power website [1]

3.3 Printed Circuit Board (PCB)

During the Seacanairy development phase, a breadboard was used to test all the electrical
connections between the sensors and the central computer. Figure 40 illustrates the complexity
of the connections and the tangle of jumper cables (fast prototyping) after connecting the sensors

accordingly. This kind of fragile connection takes up space, is subject to electrical noise and easily

71

Combining components into a measuring device

disconnect. The production of a printed circuit allows all the required connections to be

condensed into a tiny plastic plate. The following points summarize the steps followed to build

the Seacanairy printed circuit board using the software KiCad.

Table 15 Inventory of the printed circuit board

Source: own work

Supplier

Reference

Name

Price
per
unit

Quantity

Price

Eurocircuits

Custom Printed Circuit

Board

53.36

RS

Components

SSW-101-
02-T-S

Samtec, SSW 2.54mm Pitch
1 Way 1 Row Straight PCB
Socket, Through Hole
Single female header for
soldering on the PCB into ADC

connections

0.43

2 packs of
10 units

8.60

1725656

2 way PCB vertical mount
terminal,2.54mm

Terminal block for 5V and 5V-

linear power supply

1.81

1 pack of

5 units

7.48

[DSD-04-
D-10.00

Samtec Slim Body Double-
Row IDC Socket
Assemblies, 0.100" Pitch
2 row 8 way cable for the flow
meter sensor

3.98

3.98

SSQ-120-
03-G-D

Samtec, SSQ 2.54mm Pitch
40 Way 2 Row Straight PCB
Socket, Through Hole
40 way 2 row female header
with long legs for future GPIO

use

8.70

8.70

15133-
0606

Molex Pico-Clasp OTS Wire
to Board Cable Assembly 1
Row, 6 Way, 600 mm length
Cable between the OPC-N3
and the printed circuit board

5.45

10.90

Mantec
Namur

VMA406

5V relay module
To operate the 220V air pump

6.90

6.90

TSW-140-
09-G-S

Pin Header 40 way 1 row, 18
mm, golden
Multiple purpose: CO; sensor
connection on the sensor side
and PCB side, male header for
ADC connection, male header
for the Real Time Clock, male
header for the GPS

1.02

1.02

72

HZS

Supplier

Reference

Name

Price
per
unit

Quantity

Price

10

11

501331-
0607

MOLEX 1.00mm Pitch,
Pico-Clasp PCB Header,
Single Row, Vertical, Surface
Mount, 6 Circuits
Connection of the OPC-N3 on
the printed circuit board

6.61

1 pack of
10 units

6.61

15133-
0603

Pico-Clasp 1 row 6 way 30
cm cable

6.61

4 units

26.45

Connector with cable for
PCB, 2.54 pitch, 4 way, 1
row
For connecting the CO; sensor
through its 2.54 pitch female
header

0.95

1.90

12

13

Amazon

Yuhtech Hex Spacer Screw
Nut Assortment (M2.5)
To fix the different parts of the

mainframe together

9.06

9.06

POPESQ® wire-to-board
connector 4 way 1 row, 20
cm length

5.39

2 packs of

3 units

10.78

Figure 40 Overview of the wiring of the first prototype (on the left side) and overview of the wiring of a similar

system using the PCB-board (on the right side)

Source: own work

3.3.1 General procedure for designing a PCB

The tracing of a printed circuit board is achieved in several stages: firstly, the drawing of
the electrical diagram (also called schematic), the attribution of a footprint to each symbol, the
acquisition of the characteristics of the printer where the circuit board will be printed, and finally

the tracing of the printed circuit.

73

Combining components into a measuring device

The first step consists of schematically drawing all the connections of our breadboard
into one single schematic. This diagram is composed of symbols representing one specific
component: a resistor, a connector, or a terminal block. For connectors, symbols are generics
and disregard the physical properties of the connection (distance between pins, through-holes,
or surface mounted connectors). After inserting all the required symbols, wires are pulled to
make the desired connections. Instead of drawing lines in all directions, names are given to each

wire, knowing that all wires having the same name are interconnected.

Once the schematic is drawn, footprints are linked to each symbol. The footprint is the
name given to the physical shape and geometry of a symbol present in our schematic once
mounted on the printed circuit board (see example in Figure 41). Through this step, each symbol
gets physicals properties, such as the fixing type (surface mount or through holes), the spacing
between the pins, the number of rows, and the numbering of the pins (pair, odd, clockwise, or
counterclockwise).

Connection for the OPC—N3 sensor
QPC_N3

MOLEX PicoClasp 01x06 1mm pitch
+5V

%) 6]

spi_SCLK -5
spiMOS|
spi_MISO

A |8

= [
D

GND

Figure 41 Comparison of the symbol on the schematic with the footprint on the printed circuit board
Source: own work, using KiCad

The circuit board drawing starts by studying the printer restrictions such as the minimum
track width, hole diameter, via holes size, and the number of available layers. Then, those

parameters are inserted in KiCad, which will care to respect them.

Sadly, KiCad does not draw the PCB automatically. All the footprints need to be
manually placed where wished and required connections to be manually drawn. Since it is a
print (two dimensions), no line can cross, as this would generate a short circuit. The position of
the footprints must avoid as much as possible the crossing of lines. As a last resort, vias are used:
perforations are made, allowing the electricity to pass from one layer to another. As a result, it

takes a few hours to find the best drawing (see Figure 42).

74

HZS

00000000000
010/0100/0/0/0

>

ooon|s
(o}
Q000

Figure 42 Positioning of the footprints and tracing of the electrics lines
Source: own work, using KiCad
Finally, the required components are soldered to the PCB. Table 15 on page 72 lists all

the components necessary for creating the PCB. See Annexe 3 and Annexe 4 on pages 117 and

119 for design details.

=
5
4
o
&

Aux power sup Main
00| 8
ool @@

44 44
i SVHRGND. SVOND o

Figure 43 Printed circuit as supplied by Eurocircuits

Sowrce: own work

75

Combining components into a measuring device

Figure 44 Welding the connectors on the custom PCB

Source: own work

3.3.2 Seacanairy wiring

The global electrical wiring of the Seacanairy is shown in Annexe 3 on page 117. Sensor

specific wirings are explained accordingly in Chapter 1 from page 3.

3.3.3 The connection between the Analog to Digital Converter (ADC) and the
custom circuit board

The main difficulty in designing the printed circuit is the connection between the printed
circuit board and the ADC located one floor below. In order to remove any electrical cable, it
was necessary to match the perforations in the printed circuit board with the perforations in the
ADC. First, the three-dimensional file provided by the ADC manufacturer (Alchemy Power) has
been converted to a KiCad footprint using FreeCAD with the KiCadStepUp add-in. Next,
several shapes' projections and clippings have been carried out to constitute the different layers
required by KiCad. Then, the created footprint has been transferred to the KiCad library. Finally,
the perforations have been added, and the pads numbered in the same logic as the symbol (the
difference between symbol and footprint is explained in more detail in point O and Figure 42 on

page 75).

The ADC has been designed with a pitch (distance between the perforations) of 3 mm
instead of 2.54 (standard). This kind of part being untraceable, single headers (item number 2

in Table 15 on page 72) were purchased and soldered where required.

76

HZS

Figure 45 Connection between the printed circuit board and the ADC

Source: own work

Figure 46 Female header on the ADC and male header on the printed circuit board

Source: own work

3.3.4 Tips for a successful printed circuit

e After placing the footprints and before starting drawing in KiCad, check that it
is physically possible to place all the necessary connectors on the board (avoid

putting two connectors too close).

e Make sufficiently large perforations. This facilitates the desoldering of

components.

e Dlace sufficiently large pads®. This makes it easier to weld through holes

components because the weld has a larger surface to deposit.

% Name given to the conductive surface around a perforation on a PCB on which the solder is placed.

11

Combining components into a measuring device

78

Use through holes perforations as vias (to create a connection from one layer to
another). This allows for decreasing the number of perforations on the board and

spare place on the PCB.

Place the tracks on the opposite layer from which the welds will be applied. This

helps prevent damage to the tracks when soldering the connectors.

Before soldering, tin the tip of the soldering iron by melting some solder on it.
This makes it possible to have a liquid contact between the soldering iron and
the printed circuit, and therefore better heat conduction. Then, when the circuit

pad is hot, the solder strand can be approached.

Keep the soldering iron temperature as low as possible to avoid damaging the

circuit board (around 250 °C).

Chapter 3

Setting up the development
environment on a stand-alone
computer

The previous chapter showed how the sensors were connected by tubes so that the same
air passes over all the sensors. It also showed how all the electronic components were connected
to a voltage source. To allow an actual communication between the central computer (i.e.,
Raspberry Pi) and all the connected sensors, a software need to run on the central computer.
The software was written on a stand-alone computer, and then regularly transferred to the
Raspberry Pi for execution and tests. Software and libraries are executed in a virtual environment
so that their operations are detached from the system. The software aims to connect all the
sensors in a single frame, get the measurements simultaneously, store all the data in a single

database, and provide real-time information to the operator on a screen.

The central computer used is designed to work with Linux and the Python language.
Python is a language known for its simplicity, rich in features, reliability and efficiency. Before
starting to write our Python code, a series of steps are necessary to set up a software development
environment on a stand-alone computer in which we will be working during the coding process.
The configuration of a comfortable environment is essential for realising such a complex project
with no initial knowledge of Python programming. The first part of this chapter explains how to
set up the integrated development environment on its personal computer. The editing software,
the automatic backup system, and the addition of libraries to the editing software are explained.
The second part of this chapter deals with the Seacanairy central computer. It is concerned with

the remote connection to the central computer, the file transfer, how to update the central

79

Setting up the development environment on a stand-alone computer

computer, the Python virtual environment, as well as the procedure for testing our software as it

is being written.

1 Set up the development environment on a personal
computer

1.1 Development software - PyCharm

The first step is to find the software to code with. PyCharm has been selected among the
wide variety of IDE (integrated development environment), because it is one of the most
accessible IDE to start coding with Python. Similar to Words capability to highlight mistakes
during typing, PyCharm incorporates Python and other components for continuous code
monitoring. Hence, PyCharm can point out errors, suggest simplifications, increase readability,
or invite to add comments. Along the way of writing the code, PyCharm suggests new tips and
tricks to the user to improve his code. Thus, the user can improve his skills in Python while
working on his project. Figure 47 shows a screenshot of the main PyCharm display. The yellow
lamp on the left indicates a little trick that the software suggests to the user. As an example, the
improvement shown is the addition of a line break at line 267 to avoid text exceeding the screen

size. PyCharm IDE has a free and premium version. The free one is sufficient for the Seacanairy

@ file Edit View Navigate Code Refactor Ryn Jools Git Window Help anairy eacana: y tod X
Seacanairy 2 1 seacanainy.py X~ scatch 11 v B & Gt ¥ v 20 5 Q&
£ Project D I = & — jaseacanaiypy 5 sensirion_mass_flow_meter.py CO2py OPCN3.py GPS.py = S€acanairy_settingsyami AFEpy £ scratch_11.0y
£ Seacanairy 2 [pythonProject] csv_file = directory_path + "/ + str(project_name) + "-data.csv" &
| OPC-N3 Arduino example if not os.path.isfile(csv_file):
< os.mknod(csv_file)
§ B -gitignore print("Initializing data file", csv_file)
o A AFEpy
b CO2py to_write = []
A draftpy

to_write += ["Date/Time"]

F Pull Recuests

® Reformat the file [l P# 2.5 (ug/m’)", "PM 18 (ug/m®)",“Temperature OPC (°C)", "Relative Humidity OPC (%RH)", “"sampling time 0l
O pToTE TN *, "bin 2", "bin 3", "bin 4", "bin 5",
w_meter.py Ignore errors like this 7", "bin 8", "bin 9", 8", "bin 11",

A SPI_test.py 13", "bin 14", “"bin 15",

7 Inject language o reference A AeT A
& Start_to_tshirp.py

19", "bin 20", "bin 21", "bin 22", “bin 23",
External Libraries
bin 3 MToF", “bin § MToF", "bin 7 MToF",
 Scratches and Consoles 5
“reject count glitch”, "reject count long TOF", "reject count ratio®,
“peject count out of range”, “fan revolution count™, "laser status”]
to_write += ["average flow[sccm]”, “average flow [slm]", "average flow [slh]"]
to_write += ["temperature (*C)", "temperature (aV)",
“NO2 (ppm)*, "NO2 main (mV)*, "NOZ aux (mV)",

"0X (ppm)*,
£ "s02 (ppm)”,
"co2 (ppm)”, "

X main (aV)", “OX aux (mV)",
2 main (mV)", "S02 aux (mV)",
main (mV)", "C02 aux (mV)"]

* Favorites B

th weite sz ["Flau (erem)® “Flow (<1m1" “Flow (<1R1%1

B Gt ET000 @ problems ® pythonPackages B Termnal 4 python Console Qeventtog
{J PEP 8 E303 too many blank lines (2) 26623 CRLF UTF-8 4spaces Python38 P master

Figure 47 PyCharm screenshot

Source: own work

80

HZS

1.2 New project creation

Once PyCharm has been installed, create a new project. Indicate the location where your
code (what you are typing) will be stored. In the Virtualenv section, indicate the location where
the virtual environment will be stored. Do not store the virtual environment in the same folder
as the code. This creates a lot of files and confusion between code and the system files. The use
of a virtual environment allows the user to work on different projects using different Python
versions, different library versions and Python interpreters. Figure 48 shows a PyCharm IDE

screenshot. After the project is created, the IDE starts a Python script example named main.py.

Create Project X
)

Location: | C:...\Documents\folder where your code will be stored

¥ Python Interpreter: New Virtualenv environment

© New environment using v Virtualenv A
Location: C:...\Documents\folder where your virtualenv_will be stored
Base interpreter: Python 3.8 hd

Inherit global site-packages

Make available to all projects
Previously configured interpreter
tterpreter: | @ Python 3.8

Create a main.py welcome script

Figure 48 Create a new project in PyCharm

Source: own work

1.3 Git repository and GitHub account

[t is common sense to keep a backup of the software. Best practice dictates that during
the whole Seacanairy development process, it is necessary to create a repository on GitHub and
to push any new version of our code on the cloud. GitHub is a free cloud platform for software
backup, file sharing, and collaboration. PyCharm is fully compatible with GitHub after the

installation of Git.

Start by creating an account on github.com. Then, install the Git package via

git-scm.com/downloads. Once Git is installed, restart PyCharm and open the PyCharm settings

(File/Settings).InVersion Control,in Git, check that PyCharm has well detected the path
to the Git executable. If the path has not been detected, fill it in yourself. The path should look

like this: c:\Program Files\Git\cmd\git.exe. Figure 49 shows the procedure and menu to

81

https://ivobruggeoffice-my.sharepoint.com/personal/cyril_dewez_365_academicoffice_be/Documents/Thèse%20de%20Master%20%5bCloud%5d/6%20REDACTION/github.com
https://ivobruggeoffice-my.sharepoint.com/personal/cyril_dewez_365_academicoffice_be/Documents/Thèse%20de%20Master%20%5bCloud%5d/6%20REDACTION/git-scm.com/downloads

Setting up the development environment on a stand-alone computer

open to reach the settings. Once the plugin has been successfully linked, connect Git to your

GitHub account. On the same window, open GitHub, press + on the top and Log In via

GitHub. Refer to Figure 50 for more details.

nfdrl View Navigate Code Refactor Ryn Jools Git Window Help ana aed o X
Ser New Project y - scatch v o B BB Gt v v 270 9 Q%
New. Alt+insérer Settings x
% 4= 0 oy
7 New Scratch File Ctri+Alt+Maj +Insérer
B ren Version Control > Git ¥ v
D seess D Path to Git executa) 16
| Openeom
Keym: Set this path only for the current project
& Close Project i i £
Ps Editor
Rename Project. Enable staging area
Y| # sestings. Ciri+AltsS
g Tie Properties. * Version Control
&
3 Local History > Background Commit automatically on cherry-pick
+! h i
B SaveAl Cutes Changeists Add the ‘cherry-picked from <hash>" suffix when picking commits pushed to protected branches
‘G Reload All from Disk CrisAltsY Commit
Invalidate Caches i sion Wam if CRL line separators are about o be committed
Manage IDE Settings > File Status Colors Warm when committing in detached HEAD or during rebase
Pr »
NeAToRct ik ssue Navigation Explicitly check for incoming commits on remotes; Auto -
>
Spo Shelf
& Print ’—
Git M -
Add 10 Fgrortis 5 Update method: Merge
GitHub
Power Save Mode Clean working tree using: Stash) Sheive
Mercurial
Exit Auto-update if push of the current branch was rejected
> Subversion
[Show Push dialog for Commit and Push
Project: pythonProject G =)
> Build, Execution, Deployment Show Push dialog only when committing to protected branches
» Languages & Frameworks Protected branches mastes
> Tools
Load branch protection rules from GitHub
g
B Use credential helper
@
B Filter “Update Project” information by paths: Al &
* ot os.pathisfile(csv_file;
BGt ET000 @ problems ® Pyondadages [Terminal 4 Python Console Qeventtog
[Editapplication settings 26517 CRLF UTF-8 4spaces Python38 P master
Figure 49 Git incorporation to PyCharm
B Ssettings X

Version Control *> GitHub

> Appearance & Behavior - v

ey
> Editor Log In with Token...

Plugins Log In to GitHub Enterprise...

* Version Control
Background
Changelists
Commit
Confirmation
File Status Colors
Issue Navigation
Shelf
Git

Eer(una

> Subversion

> Project: pythonProject
> Build, Execution, Deployment
> Languages & Frameworks

> Tools

Clone git repositories using ssh

Connection timeout. | 5 seconds

? [oc |

Cancel

Apply

Figure 50 Log in GitHub using PyCharm

Source: own work

Once PyCharm is configured to communicate with the GitHub servers, we can create a

repository. This is the name given to the folder which will be synchronized with the cloud. In

PyCharm, open the vcs tab and create a Git repository. Now, share this repository on

82

HZS

your GitHub page. In VCS, click on share project on GitHub. Give your new repository a name

and a short description. Once this step is done, you see a new project on your GitHub page as

in Figure 53.
B File Edit View Navigate Code Refactor Run Iaa\sawnanw Help tes2 T - x
ez Enable Version Control Integration. B~ Add Configuration.. Q %
l = rroiece ~ T oz g VCSOperstions Alts
g‘ — Apply Patch.
- B Create Git Repository X
Get from Version Control..
Browse VCS Repository > Select directory where the new Git repository will be created.
Import into Subversion,
Share Project (Subversion) A0k KB X S @G Hide path
C\Users\dewez\Documents\4SN - 2020-2021\Seacanairy v
> Job d'étudiant 2020
> new_project
> Polar training
> sC
> test2
> Activités
> B Applications
> Bonne maman
> Carbon footprint HZS v2
> Certifications
> Code arduino autres tudiants
> Contrat Kot 2020-2021
> Dominique
> Drivers
F > W EAGLE
‘g ? “ Cancel
.
STo00 @ Problems D Terminal % PythonPackages @ Python Cansele Q Event Log

Bython 3.8 (test2)

Figure 51 Create Git repository through PyCharm

Source: own work

1.4 Commit and Push files to GitHub

Every time the user makes a series of changes, they should be posted immediately to the
server by pressing commit. Select the file you want to update and write a comment. The comment
should shortly describe what changed in the new version. Once you commit to all the desired
files, push them to the cloud. Refer to Figure 52 for more details concerning the procedure.

Stored and updated files are also visible on the GitHub web page, as shown in Figure 53.

83

Setting up the development environment on a stand-alone computer

B file Edit View Navigate Code Refactor Ryn Jools Git Window Help Seacanairy 2 - seacanairypy — o X

H % -
< Tz
%
3
e
;
L
Amen 1 modified

syntax improvement

[

Bat ET0D0 O Problems

= python Packages

&~ soratch 11 v b

 sensirion_mass_flow_meter.py 5 CO2py « A OPCN3py - A GPSpy * yak seacanairy_settingsyam! 5 AFEpy 2 scratch 1.0y

€13 A v
csv_file = directory_path + "/ + str(project_name) + "-data.csv" . d h
16 not. as.path. sfila(esv_F110): Commit and Pus
05 Mk st
@ Push Commi i
print(B Push Commits ta Seacanairy 2 x
4 z
towrd] CUsers\dewez\OneDrive - Academic OfficeThése de Master [Clo
to_wrif & sescansiry.py
to_wrd]
to_wrd]
L L L
m)", "0X main (aV)", "OX aux (aV)",
", "S02 main (mV)", "S02 aux (mV)",
"C02 (ppm)", "CO2 main (aV)", "CO2 avx (mV)"]
B Terminal 4 Python Console Qeventiog

Pushing. 119 CRLF UTF-8 4spaces Python38 P master

Figure 52 Commit and Push changes to GitHub

Source: own work

Releases

nnnnnnnn

Figure 53 GitHub repository example

Source: own work

1.5 Libraries installation

While coding in Python, for the Raspberry Pi, libraries are used. These libraries are sets

of predefined useful functions. The required libraries have to be installed in PyCharm. In this

way, the IDE will be able to check the code and help us. To install a new library in PyCharm,

open File, then open Settings, click on the Project tab and click on Python Interpreter.

Then, use the button + and — on top of the page to add and remove libraries. The procedure is

shown in Figure 54. Hereafter is a list of the required libraries:

e Mysqgl-connector

84

HZS

e Progress

e Dyserial

e PyYAML

e Raspberry Pi.GPIO

e Smbus2
Iigan View Navigate Code Refactor Ryn Jools Git Window Help nairy 2 - seacanai - a X
Ser New Project &~ scatch 11y . b 28 Gt ¥ v 20 95 Q%
e AltsInsérer .
¥ N & B settings x hen 110y
g New Scratch File Ctri+Alt+Maj+Insérer
i Project: Seacanairy 2 * Python Interpreter @
= = Qoen.
Save As. " N
- Appearance & Behavior Python Interpreter: # Python 3.8 - @
E OpenRecent »
13 Keymap
M Close Project
» Editos
Plugins & . versi
- (= RIS g Pai Install Version Latest version
g » Version Control
2~ TieTopees
H - Project: Seacanairy 2
=4 Local History >
& ython Interpreter =
B saveal Cutes | By s
S Reload Al from Disk CtrlsAlteY GizmEa=m
Invalidate Caches L) ST (T S
Manage IDE Settings Languages & Frameworls
New Projects Settings » > Toals
Export
& print.
Add to Favorites
Power Save Mode
Exit
H Luc wppms o, wuz main wmvy o, Lvz aux vy g
*
BGt ET000 @ problems ® pythonPadages D Terminal 4 Python Console Qeventiog
Edit application settings 26517 CRLF UTF-8 4spaces Python38 P master

Figure 54 Install libraries on PyCharm

Source: own work

1.6 Connect to the Raspberry Pi using TeamViewer

TeamViewer is an easy software solution allowing remote control of any computer from
any device. It is used for debugging in informatics, the internet of things, and remote access. In
contrast to SSH (Secure Shell), TeamViewer works from any connection (either local or
worldwide), which requires a local connection (computer connected to the same router as the
Raspberry). Download TeamViewer on your computer from the official website

(teamviewer.com). On the Raspberry Pi, open TeamViewer using the shortcut on the Seacanairy

central unit desktop, using either the touchscreen or a USB mouse plugged in the Raspberry Pi
USB). Meanwhile, on your PC, insert the partner ID and type the password when required.

Current Seacanairy central computer partner ID and password are written in Table 16.

85

http://www.teamviewer.com/

Setting up the development environment on a stand-alone computer

Table 16 Raspberry Pi TeamViewer ID and Password

Source: own work

Partner ID

Password

1612778925

se@c@n@iry

1.7 Transfer files from or to the Raspberry Pi

To transfer files from your computer to the Seacanairy central unit and in the opposite

direction, connect to the Raspberry Pi as explained in section 1.6. On the top of the computer

screen, click the TeamViewer banner and open File Transfer. A window will open, showing

side by side the PC storage and the Raspberry Pi storage. Next, select a file on the right or left

and click on the corresponding transfer button, either send or receive. Multiple files can be

transferred at once, holding down ctrl or shift.

X 7 o v ©

8 © B Hreamvewen

[File transfer to raspberrypi (1612 778925

Canm‘l (i Files & bxras ~ | &

® B 25 5]
= “© @ le i || O
Ak e | St | wie S i
ey e
o vou preliy

CYRIL-SPECTRE raspberrypi
Locl comeuer Remote computer

G T [homeiphseacanainy project Sk

@ e wd]\3 RASPRERRY P| SOFTWARE\Seacanairy 2 | ()

] send

] 5 @) 74

=

Name sze Type Modfied A
ot Dassier de i 08/05/2021 1..
adea D de fi.

pyeache

OPC-N3 Arcuina exam o

o .
0048 Documentte.. 15032021 1..
ISSOKB FchierPY 20042021 1..
haskB FichiorPY 02082021 1.
TESIE FchierBY 15032021 1.
IBES KB Fichier PY 23/03,/2021 1.
153048 FchierPY 02052021 1 v
>

sz Type

Daossier o¢ fi.

Modified -
10742021 1.

defi. ZT/042021 1.
i 20/04/2021 1

80118 Fichier CSV

[15-042115:0821409... ©0OKE Documentte..
[27-04:2127-0421409... ©0OKE Document te..

7] 29-0429-04-doglog 000k Document te.
Besepy 1550 K8 Fichier PY
(8] Background g 4830 Fichier PNG

Bcozey 2632 k8 Fichier Y
<
0 object(s) selected

19/02/2021 1,
08/B4/2021 1.
21842001 2.,

09/U5/2021 1.
T 1., v
>

©of 0jobs completed Clear finished jabs

Close

Figure 55 File transfer from/to the Raspberry Pi

Source: own work, screenshot of the central computer scree, taken through TeamViewer

2 Set up the development environment on the Seacanairy

central computer

2.1 Update the Raspberry Pi

As modern electronic devices connected to the internet, they are suffering from

vulnerabilities and bugs. Raspberry Pi OS, software's and other libraries are in constant

evolution. The procedure to update the Raspberry Pi is described [36]. A summary:

86

HZS

e Update the system's package list: sudo apt update
e Upgrade the package list to the latest version: apt list --upgradable

e Run all the upgrades in the list. During this last step, do not disconnect the
Raspberry Pi power supply. Do not worry about screen behaviour which can
become black for a while. The display will return when the update is finished.

sudo apt full-upgrade, confirm via Y

2.2 The virtual environment on the Raspberry Pi

The virtual environment stores all the libraries used in one project in one separate folder.
That way, the user can work on different projects with the same device using different libraries

and versions, for example.

2.2.1 Create a Virtual Environment

This point aims to explain how to create a new virtual environment on the

Raspberry Pi [16].

e Create a folder in the storage where Python codes, virtual environment, and data

files will be stored altogether.

e Open a new terminal on the Raspberry Pi and open the folder created before

using cd followed by the folder name. Execute cd seacanairy project

e Execute the following function to create the virtual environment. Let the process

work until it is finished. Execute python3 -m venv ./venv

2.2.2 Virtual environment activation

Before any Python-related action in the command shell, activate the virtual environment.
The following steps are illustrated in Figure 56 [16]. Refer to point 3 on page 92 for console

tricks.

e Open the folder in which your virtual environment is saved using the cd

command. Execute cd seacanairy project

e Activate the virtual environment. Execute source venv/bin/activate

87

Setting up the development environment on a stand-alone computer

e The virtual environment is now active. Subsequent commands entered as pip or
python will be executed in the virtual environment. To leave the virtual
environment, type deactivate and press enter. Note the presence of on the left

of the green text.

Fichier Edition Onglets Aide
pi@raspberrypi:
nif@raspberrypi:

(venv) pi@raspberrypi:

Figure 56 Activate the virtual environment on the Raspberry Pi

Source: Own work, a screenshot of the central computer screen, taken through TeamViewer

2.2.3 Activate the virtual environment in Thonny Python IDE

Thonny Python IDE is the built-in IDE for Python on the Raspberry Pi. It is not as
powerful as PyCharm (see page 80), but it is an easy way to make small modifications to a code
during development. By default, Thonny Python IDE uses the built-in Python 3 version. To run
our code based on our virtual environment, some changes must be made in the settings. To do
this, open Thonny Python IDE using a USB mouse or use the touchscreen as shown in Figure

57. Then, follow the procedure, also explained schematically in Figure 58.
e In tools, open options.

e Open the interpreter tab. Select Alternative Python 3 interpreter or

virtual environment.

e Below, indicates the location of the python file in the virtual environment created
at point 2.2.1. The path should look like .../venv/bin/python. Click on the ..

on the right to navigate through the folders.

e C(Click on ok and restart Thonny Python IDE. After the restart, you should see the

new interpreter path on the right bottom of the window.

88

HZS

Bl<3 BlueJ Java IDE

@ Education > 44 Geany Programmers Editor
@ ofice > @ Greenfoot Java IDE

@ et > 3k Mathematica

T sound s viceo > @me

F craphics » B Node-RED

A Games > 8, Scratch

b System Tools > g8 Scratch 2

o Accessories > [B scratcn 3

@ #opiications Chromium > R sense HAT Emulator

O e

Th Thonny Python IDE

() violiam

[=] Preferences
] Run
B soon

Figure 57 Opening Thonny Python IDE

Source: own work, a screenshot of the central computer screen, taken through TeamViewer

[:) @ E Eﬁeamviewed

Thonny

Help

=z W) 1754

File Edit View Run

IManage packages.. - - -
+ g [l] (c Genera | Interprete IEdltcu | Theme & Fon | Run & Debu | Termina | Shel ‘ Assistan
Open system shell...
sensirion_mass_flow o ™ o Which interpreter or device should Thonny use for running your code?
1 # get the pen Thonny program eieert. =\ kerative Python 3 interpreter or virtual environment - —E.]
e R Open Thenny data felder... -
2 import tim The same interpreter which runs Thonny {default) \
3 from datet " | Alternative Python 3 interpreter or virtual environment
4 . anage plug-ins... Python executable
5 # Get the

|L’home!pi/seacanairyJ)rojeCUve nv/bin/python

Python 3.7.3 (/home/pi/seacanairy project/y
>>>

NB! Thonny only supports Python 3.5 and later

Mew virtual environment

[o |
=
| /home/pifseacanairy_project/venv/bin/python

| Cancel |
I

Figure 58 Virtual environment in Thonny Python IDE

Source: own work, a screenshot of the central computer screen, taken through TeamViewer

2.3 Install Python libraries on the Raspberry Pi
All libraries used in this project have been installed using pip3 in the virtual

environment. 1.5 on page 84.

Table 17 is a list of pip3 functions necessary to install Python libraries. Before proceeding
to any pip3 execution, be sure to have activated the virtual environment as explained in point

2.2.2 on page 87. Necessary libraries for the Seacanairy are listed in 1.5 on page 84.

89

Setting up the development environment on a stand-alone computer

Table 17 pip3 function list

Source: own work, online documentation [16]

Purpose Function
Show help pip3 --help
Install a library (e.g., smbus2) | Pip3 install smbus2
List all installed libraries pip3 list
Remove a library (e.g., smbus2) | Pip3 uninstall smbusZ

2.4 Testing code on the Raspberry Pi

As explained in 1 on page 80, it is best to write the code on your personal computer using
PyCharm rather than working on the builtin Thonny Python IDE on the tiny Raspberry Pi's
screen. However, sensors and devices are connected to the Raspberry Pi and not to our computer.
Therefore, regular code transfer from the PC to the Raspberry Pi for testing is necessary.
Different methods are available: copy/pasting the code as text using TeamViewer, file transfer

using TeamViewer or python execution in the console.

2.4.1 Copy-pasting in Thonny Python IDE

Connect to the Raspberry Pi via TeamViewer as explained in point 1.6 on page 85, and
open Thonny Python IDE as explained in point 2.2.3 on page 88. Next, select the whole code
on your computer using ctr1+A and copy it to the clipboard ctri+c. Next, go into TeamViewer,
open Thonny Python IDE and paste the code in the corresponding file ctr1+v. To execute the
code, press the green arrow on top of the window. Repeat this manipulation each time you need

to test your code.

90

HZS

B Be Edt Yew Newgote Code Befacior Run Jook Gt Wndow Help e OPCNzpy - o x

Thonny - /home/pi/sea..ject/OPCN3py @ 6:16 v ~ x

Seacanairy 2 (5 OPCN3.py - TRV A) k¥ v 20 Q@

Project ~ B I T O — gy & READMEMI 4 sensinon_mass flow_meter py i COLpy # OPCN3.py B GPSp v Fi . .

r——— ile Edit View Run Tools Hel

! Seacanairy 2 [pythonProject] » &) /nowe/pl/seacanairy. project/veny/bin/pythond P Pk R s}
L3 OPC-N3 Arduinc example sen
- e Library for the use ond operotion of the Alphaosense OPC-A3 sensar —1
H & gibgnore
S Basey
°

& CO2py

-l fuport spidey # ariver far the SPZ/seriol co

g {agoretiee sensirion_mass_flow_meter ~ > ['aneni e
i 1ADOPT SEPUCT & 0 Convert (e TEEE Undo Ctrl+?
E inpart gatetine 1 -
i taport sys Redo Ctrl+Y 1
inport o # to create folders/files and 2)
from progress.bar import IncrementalBar 3 E—D]
PRt 4 cut cubx [
Anport 10gging # sove logger messnges Into memor: 5 CirlC
£ Josl:_settings ® Show Contest Actions Alts Entrée 6
inport yaml ¢ rend user st - 7
(T — 8 Select al CirieA
sttt erasiaias: Baste eV g
YAMU SETTINGS Copy/ Paste Special)
| Cotumn Selection Mot It Mg
e oot i? Indent selected lines Tab
ot cunrent directory i 3)
B il 12 Dedent selected lines Shift+Tab
F
VTN OPEOCEUMTENT.NONKING.C i cong 4 . NENE Replace tabs with spaces

settings = yanl.safe_lc

file.close() e s Shell 3¢
o —==== l0ggle comment Ctri+3 -

> Run. CrteMageF10 e
store_debug_messages * sett | (impu
L &
ke 3 h command byte ©x3 comment out Alt+3
project_name = settings('se . , met] Laser is OFF
L o] l:;m,, - OPC-N3 . pEBU(Uncomment Al+d
§ flushing. = se! 4 i
§ Gt OPC-N3 : DEBUC
E . Erecute Selctionin ython Console AteMajoE
4 Y 1. i Py Coroctc h command byte 0x3 ajutocomplete Ctrl+space
3 Compare with Clphowd Fan is OFF
] take_new_sample_if_checksut
E settingsl"07c-¥3 sensor ©.C 55 sleep Find & Replace Ctrl+F
. a8 AN : ,
B Gr =T0D0 O Prodlems W Pyihon Packages B Terminal @ Python Console @ Event Log — -
D Copy to cipboard 1716 (42135 chars, 967 ke breaks) CRLF UTF-8 dspaces Python33 P master % Clear shell Ctri+L ==

Figure 59 Copy-pasting code from PC to Thonny Python IDE

Source: own work, screenshot of the central computer scree, taken through TeamViewer

2.4.2 TeamViewer File Transfer and python3 in console

Open TeamViewer (as explained in point 1.6 on page 85) and open file transfer (as
explained at point 1.7 on page 86). On the left side, browse the through the maps where your
code is located on your PC (refer to the PyCharm project creation in point 1.2 on page 81). On
the right side, browse the place where you want to store the file on the Raspberry Pi (likely in the
folder created before at point 2.2.1 on page 87). Finally, press on send. Once the file is stored
on the Raspberry Pi, execute it using Python 3 in the console. Activate the virtual environment
(see 2.2.2 on page 87). Then, write the following line, adapting seacanairy.py with the name
of the code file you wish to execute (see Figure 60). Refer to point 3 (Console tip and tricks) for

quicker console use.

python3 seacanairy.py

91

Setting up the development environment on a stand-alone computer

File Edit Tabs Help

Figure 60 Testing code using file transfer and console

Source: own work, screenshot of the central computer scree, taken through TeamViewer

3 Console tip and tricks

The following table indicates some tip and tricks while working with the console. They

make life easier and can save much time.

Table 18 Tip and tricks console

Source: own work

Action Description
Keyboard 1 | Move through the execution history (even if the system has been
and | stopped/closed)
ctrl+ce Kill an instance (force to stop)
ctrl+x Exit a nano screen
&&

Concatenate different lines and actions in one line
Example (in one line): cd seacanary project && source
venv/bin/activate && python3 seacanairy.py

4 Raspberry Pi password

92

Table 19 Raspberry Pi username and password

Source: own work

Username | pi

Password | raspberry

Chapter 4
Software of the Seacanairy

The previous chapter described the environment in which the software was developed.
In order to manage from the Seacanairy central computer the sensors, the data, operate the
pump, start measurements at regular intervals, and store all the data in a single database, the
software has been written in Python. This chapter deals with the overall structure of Python code
files, how the different parts of the software work together and the other processes that take place
during the operation of the Seacanairy. An in-depth study of the software for each sensor as well

as their electrical connections is to be found in Chapter 1.

1 Overall Seacanairy software structure

The first problem we had to face during the realization of the Seacanairy is the good
operation of the communications with the sensors. There is no standard allowing the easy plug
and play connection of a sensor to a central unit and its immediate correct functioning.
Therefore, each sensor required an in-depth study of the manufacturer's documentation, the
communication protocol used, as well as hours of trial and error for the software to function
correctly. The algorithms of each sensor have different functions, including get data (), which
automatically performs all the necessary operations to take a measurement and return the data.
When each sensor is working individually, we wrote the final code for the Seacanairy, which
starts the pump, execute the get data () functions of each sensor, and stores the data in a single
database. Figure 62 is a drawing of the global software structure. Each round indicates a different
Python code file. Note that ‘.py’ is the extension for Python files. Figure 62 is an illustration of

importing the algorithms of the sensors and performing the functions to obtain the data.

93

Software of the Seacanairy

Particulate
matter sensor

=

e
R

Settings

8

Time

GPS receiver

MySQL

Figure 61 Seacanairy software structure

Source: own work, using draw.io

94

HZS

-
o]
)
+
g
Y
S
D
)
s

import CO2
import OPCN3
import AFE
import GPS
import flow

Use the functi
CO2.get data()
OPCN3.get data (3,
AFE.get data()
GPS.get position()
flow.get data()

Figure 62 Importation in Python example

Source: own work, using PyCharm IDE

This working method is advantageous on the following points. The first advantage is the
size of the file. Instead of having just one big file with thousands of rows, variables, and functions,
we separate and structure our files for each sensor. Secondly, it makes it easier for anyone to copy
our code and use it in another project. This is because all the components for a sensor are kept
in a separate file. Finally, when we work on the software, we do not confuse functions and

variables between the different sensors, many of them having the same names.

All of the code files we wrote follow the same structure. Indeed, several lines of code,
such as obtaining settings and saving error messages, are common to all files. Figure 63 is a

flowchart showing the general python script layout.

95

Software of the Seacanairy

General code
layout

Import all necessary libraries

Importations (€=

Import the setiings from the YAML
file into variables

seacanairy_settings.yaml YAML settings [€----"""

¥ Setup logging to keep a trace of
the critical console messages

Logging PR -

Specific code

Function that perform all the
necessary steps to get the data
“ Script executed directly

" "

TT-------» get_data() function __name__="__main__

Script executed from another one
after import:
__name__ = "script_name.py”

End Trial code execution

Figure 63 General Python script layout

Source: own work, using draw.io

2 Information display and logging functions

Logging is a crucial step when making computer code. This involves sorting and storing
all the messages generated by our software in different levels, at least to the most important
(debugging, information, warning, error and critical). In addition to being displayed on the
screen, messages are stored in a separate text file. We then have access to a kind of logbook that
keeps track of everything that has happened, for better or for worse. In addition, the Seacanairy
is designed to operate autonomously for long periods of time. This allows us to check for any

problems that may have arisen during this period of absence.

96

HZS

Depending on how the software is run, the messages displayed on the screen will be
different. For example, running the entire Seacanairy software will only show the most important
messages. On the other hand, running the software of a particular sensor will show all available
messages. Concretely, this makes it possible to have access to all the messages when working on
the improvement of a particular sensor but to keep only the most important messages when the
Seacanairy is fully operational. That way, direct execution of a sensor script (i.e., running Co2 .py
directly) will display the messages. As the configuration of this module is a bit complex, it is
accompanied by a flowchart in Figure 64 explaining the procedure. Note that a console handler
is required to show the messages on the screen and store them into the log file. If the Seacanairy
script activates a handler and the script of a sensor also does, then the messages will be displayed
twice on the screen. This is the reason why the handler is only activated when executing the

script of a sensor directly (left part in Figure 64).

97

Software of the Seacanairy

Logging
configuration

Script executed directly
__name__ =" _main__

"

Script executed from another one
after import:
__name__ = "script_name._py"

true
v

File is directly executed

|

Create new file
"device_name-
debugging.leg”

level = DEBUG

v v

false
v

File is executed as a library

User want to store
debug messages

r Yes No W

level = DEBUG level = INFO

v

log filename =
senor_name-
debugging.log

Activate console
stream handler

log filename =
sampling_session_name.log

v

Set logger

Figure 64 Logging flowchart

Source: on work, using draw.io

3 Settings page
3.1 Choice of file format

All the Python scripts depend on a unique settings file that allows the user to change a

few sensors, logging, and sampling session settings without changing the source code. Two file

types are available for that purpose: JSON and YAML. JSON (JavaScript Object Notation) is a

derivative format of JavaScript. Working with indentation, brackets, colon, and quotations

marks, almost every data type is available. Either readable by a machine or by a human, JSON

98

HZS

depend a lot on the syntax and do not allow any comments. YAML (Yet Another Markup
Language) aims to be as easy as Python and rely only on indentation, indents, and colons. It also
allows writing comments in the file after a number sign (#) to give more information about a
setting. That makes YAML files clearer for people who know little about coding. Figure 65 is a

comparison between JSON and YAML files for the same content.

JSON example
{
"menu”: {
"id": "file",
"value": "File",
“popup”: {
"menuitem": [
{ "value": "New", "onclick": "CreateNewDoc()" },
{ "value": "Open", "onclick": "OpenDoc()" },
{ "value": "Close", "onclick": "CloseDoc()" }
1
}
}
}
YAML example
menu:
id: file
value: File
popup:
menuitem:

- value: New

onclick: CreateNewDoc()
- value: Open

onclick: OpenDoc()
- value: Close

onclick: CloseDoc()

Figure 65 Visual comparison between JSON and YAML

Source: adapted from Wikipedia [17]

3.2 Available settings

The seacanairy settings.yaml file is a text file containing the various settings of the
Seacanairy. A copy of this file can be found in the files joined to this paper (see Annexe 1 on
page 113). To avoid any crash in the software, do not alter the structure of the file. Hereafter is

a list of all the available settings.
General:

e Activate database/sensor: activate or deactivate a functionality.

99

Software of the Seacanairy

Seacanairy:

e Sampling session name: name of the measurement session. This name will be
assigned to the file containing the data, the logging file, and the database table.

e Sampling period: period of time between each measurement.

e Air pump minimum running time: minimum amount of time the air pump runs
per loop. This ensures sufficient flushing of the air inside the piping. Gas sensor
measurements starts after this amount of time.

e Store debug messages: store all messages in the logging file, or store only error
messages.

MySQL database:

e Host: the URL leading to the server. Can also be an intranet IP address.

e Database name: name of the database

e User and password: different users can have access to a database with different
authorizations.

CO; sensor:

e Automatic sampling frequency: number of measurements that the CO; sensor
must perform per sampling period (setting defined previously) (see point 1.5 on
page 14).

e Number of reading attempts: number of times the software tries to get the

measurements if the checksum is wrong.

OPC-N3 sensor:

100

Flushing time: period of time between the start of the laser and the fan, and the

start of the measuring.

Sampling time: amount of time laser and fan are running and taking sample.

HZS

e Fan speed: value between 0 and 100.

e Take a new measurement if the checksum is wrong: avoids too short

measurement periods (see point 2.4.2 in Chapter 1 on page 29).
AFE Board:

e Noise reduction - number of reading averaged: number of successive
measurements of gas concentrations to calculate the average in order to reduce

the noise of the measurements (see point 3.3 on page 45).

4 MySQL Database

In parallel to an Excel file stored in the Raspberry Pi, the measurements are automatically
stored in a MySQL database, hosted in the cloud or locally. Connection information must be
specified in the Seacanairy settings file (see point 3.2 on page 99, as well as Annexe 11 on page
190). The same information can be used to link an Excel file on a standalone computer to

retrieve the data from MySQL for remote data monitoring.

The flowchart in Figure 66 illustrates the connection process, followed by Figure 65,
which shows how the systems update the database with new data, either coming from a new
measurement or from older data not yet uploaded (i.e. due to an internet connection lost). Figure
68 shows how the data are shown in MySQL Workbench. They can also be downloaded directly
to Microsoft Excel using a MySQL connector. That way, real-time graphs can be displayed.

Graphs of the Seacanairy can be found in Annexe 14 on page 195.

The server used is a free service provided by remotemysql.com. Any other MySQL
database host is possible as long as the server is remotely available, which is not the case with all
free offers. It is also possible to host the MySQL server on a personal machine connected to the
same router as the Seacanairy. In that case, the ‘host’ in the settings is the IP address of that

machine.

101

Software of the Seacanairy

102

Update database

with new data

Following executions——

r First execution

connected = False
db _line count = False
table created = False
datafile_length

}

Connect to the o
database

Failure —— Success K
. True

connected = False connected = Trug --------"""""

@ Create table (if ¢ False
not exist}

table_created = True

False

Update data

Figure 66 MySQL connection process flowchart

Source: own work, using draw.io

HZS

Udate MySQL
database

Yes First execution?

No

¥

Count number of
lines in local
datafile

Gount number of
lines in db

db_line_count

csv_file_count

are lines in
datafile than
in db?

‘ No

Yes

List all data in the csv
fine (append every
string lines to a list}

Y

Increment
csv_file_count

Process data for MySQL upload

Try to convert every
item into a float

l_ SuccessJ— Failure j

Data is a float Data is a string

4

Convert strings
containing *-' and
"error' into NULL

Concatenate MySQL
command line

Data is either ' or
‘arror'

y

Execute command to
upload

No W
Put brackets at the
beginning and at the

r Yes

Replace data by

f
H
1
1
i
|
| y
i
H
H
1
H
1
H
|

NULL
end -
R .- increment
\—,L—‘ (db_line_cou (
Append as
string

——1 ocp for every data item to uploadJ

Upload
succeeded

Append string fo list

To repeat for every lines
in the csv file to upload

For each item in the list

T Then,.——

Figure 67 Database software flowchart

Source: own work, using draw.io

103

Software of the Seacanairy

B MysaL Workbench - a X
& Seacanary x
File Edt View Query Database Server Tools Scriping Help
S e &8 B & ° D=0
Navigator e
=)
* wme FAa0® @] wmo100ow - % ¢ Q { @
1® SELECT * FROM 4tgGuNUHei.terasse_bousval 24 _08;
v & atgGwNUHe ~
v Tables
13-08
demo_hzs
demo_hzs_joeri_et_olivier
»] essai17-08-bis < 5>
» B jardin_21_08_2021
» [new_13_08 Result Grid | (1] 4% Fter Rovess || Export: g | wrap Coll Content: T3
> q ":“"»““’“i-u-“-m‘ Date_Time PM_I PM25 PM_10 Temperanre OPC Relative Humidty OPC samping_tme OPC sample flow rate OPC bnO bnl bn2 bn3 bnd bnS bné bn7 bns8
2 & :::::;:1“:::-;?_‘!«:@ 20210824 17:08:00 096 104 104 3127 33.87 1 531 & 7 2 o0 o0 o0 o0 o0 o
= = e - 145 292 2m 3w 3.3 1 531 & w7 4 o o0 1t o o o
» [terasse_21_08 2021
o B tatss o0 2021:08-24 17 17 13 13 u=s .42 1 531 & 13 3 o o o o o 0
» [test 04,08 2021-08-24 17 L1 1y 13 33 35.39 1 54 7 10 3 1 o o o 0o o
B views < 2021-08-24 17: 106 154 15 3131 33.92 1 58 61 7 4 0 1 0] 0 0
o= 2021-08-24 17: 119 126 126 3132 35.07 1 5.12 61 17 1 0 0 o o o 0
Administration
20210824 17 L7 17 1z am 814 1 53 % v 2 0o 0o o 0 o o
Information 2021-08-24 17 084 204 353 31y 35.06 1 557 s 1 0 0 o o 1 0 o0
2021-08-24 17: 085 173 1.8 3151 813 1 58 % 12 0o o o 0o 0 o 1
S : 4tgGwNUHel 2021-08-24 17: 0.98 109 109 319 34.65 1 5.58 58 9 3 0 0 o o o 0
2021-08-24 17: 3 0.75 108 L2 3151 346 1 7.02 “ 16 o o 1 o o o 0
2021082417:42:53 091 265 424 382 .2 1 6.41 7 14 1 0 0 1 1t 0 o
20210824 17:4353 074 081 081 3153 3514 1 6.24 % 10 2 o o o0 o o 0
2021-08-24 17: 3 0.89 108 108 3158 35.03 1 6.38 59 9 2 1 0 o o o 0
2021-08-24 17: 3 093 098 0.98 3.9 34.96 1 6.15 » 7 1 o 0 o o o 0
2021-08-24 17: 3 1.08 129 13 3161 3492 1 6.09 n 1n 2 1 0 o o o 0
2210824 17:47:53 101 LB 21 3182 3486 1 613 R 2 o0 o T R b
2021:082417:48:53 102 L1l L12 3165 3469 1 583 s U 2 0 o o o o o
<
terasse_bousval_24_084 x
Output
(3 Action Outout -
¢ Tme Aon Message Ouration / Fetch N
© 4 174714 SELECT " FROM 8gGwNUHeiterasse_bousval_24_08 LIMIT 0. 1000 83 rowis) retumed 0,062 sec /0.047 sec
© 5175000 SELECT " FROM 4gGwNUHeiterasse_bousval_24_08 LIMIT 0. 1000 85 rows) retumed 0,047 sec / 0.062 sec
e © 6 175002 SELECT*FROM &gGwNUHeiterasse_bousval_24_08 LIMIT 0, 1000 85 rowis) retumed 0.0475ec /0063sec ',

Figure 68 Display of the data stored in the MySQL database

Source: own work, using MySQL Workbench

5 Global Seacanairy script

The Seacanairy script performs a series of tasks during its execution. Figure 69 is a

flowchart of the different processes taking place. Since the software runs in a loop and takes

measurements at regular intervals, there is no end to the diagram.

104

HZS

Start Seacanairy
software

Show time on
screen

----------------------- Load settings file

)

Files creation

Rasperry Pi storage
A

Does the data files
already exist?

Yes

Create new folder
Append data to named the sampling
that files research name rite
centiaining log and Create variables
data files

containing all header
names and column
types

l,‘.} """"""""""""""""""" Vl—l

Start sensors
—> | (depens ofthe

Import sensor Connect to MySGQL

> | Activate logger | |—>

libraries database sensors)
H Sampling loop
Aclivate/deactivate sensors
E Trigger COy
| > measurament
Start M&C air pump
5-10 seconds delay
v 1 second delay
Particulate Matter
{OPC-N3)
Flow sensor reading
¢ ——If error ocours
Gas sensors {(AFE
Board)
GPS
CO; data reading
MySQL
Datafile databass
synchranization
Wait next sampling

Figure 69 Flowchart showing Seacanairy software functioning

Source: own work, using draw.io

105

Software of the Seacanairy

5.1 Manual operation through the touchscreen

On the Seacanairy screen (see Figure 70), several buttons allow the user to perform
various operations, such as checking the system time, changing the Seacanairy parameters, or

manually starting the Seacanairy.

o)))

%) 1933

O = @

Check System
Time

Data folder

Check

Sampling Set.

Open
TeamViewer

Start
Sampling

Figure 70 Welcome screen of the Seacanairy (shown on the touchscreen)

Source: own work, using TeamViewer

5.2 Autostart at boot

A service, named seacanairy.service, has been created so that the system starts
automatically after plugging in the power cable. When the user presses "Start Sampling", the
background service stops to prevent the system from running twice at the same time. The

following functions can be performed in order to change the behavior of the service.

Table 20 Functions to manage the Seacanairy service for autostart after boot

Source: own work

Function Operation
sudo systemctl enable Enable the service. Seacanairy will automatically start at
seacanairy.service next boot.

sudo systemctl disable
seacanairy.service

Disable the service. Seacanairy will automatically start at
next boot.

sudo systemctl start
seacanairy.service

Start the service. In opposition to the shortcut on the
touchscreen, Seacanairy will run in the background.

sudo systemctl stop
seacanairy.service

Start the service. This is automatically performed while
manually pressing « Start Sampling » on the screen.

sudo systemctl restart
seacanairy service

Restart the service. This should be executed to take into
account settings changes.

106

HZS

Get the status of the service. Shows last lines from the
sudo systemctl status console. Indicate any restart due to any crash. Indicates the
Seacanalry service time the Seacanairy system has been running (see Figure

71).

$ @ B @raspberypi: ~ [% 1955

File Edit Tabs Help
e seacanairy.service - Seacanairy sampling service
Loaded: loaded (/lib/systemd/system/seacanairy.service; enabled; vendor preset: enabled)
Active: active (running) since Tue 2021-08-24 19:54:52 CEST; 3s ago
Main PID: 18247 (python3)
Tasks: 1 (limit: 2062)
CGroup: /system.slice/seacanairy.service
L18247 /home/pi/seacanairy_project/venv/bin/python3 /home/pi/seacanairy_project/seacanairy.py

24 raspberrypi systemd[1]: Started Seacanairy sampling service.

24 raspberrypi python3[18247]: M : INFO Table (already) created (cuisine_bousval_24_08)

24 raspberrypi python3[18247]: A : INFO '/home/pi/seacanairy_project/cuisine_bousval_24_08/cuisine_
24 19 raspberrypi python3[18247]: : INFO Appending data to this file

24 raspberrypi python3[18247]: H 2] Starting of Seacanairy on the 24/08/2021 at 19:54:53

24 19 raspberrypi python3[18247]: : INFO Internal measuring time interval is 60 seconds

24 :54:54 raspberrypi python3[18247]: : INFO Fan speed is set on 100 (0 = the slowest, 100 = the fastest

lines 1-15/15 (END)

Figure 71 Seacanairy service status

Source : own work, using TeamViewer

6 Software files and folders

6.1 List of files

Figure 72 lists all the files that relate to the Seacanairy software. They are all stored in a

dedicated folder named seacanai ry project.

The Seacanairy software has been written step by step, sensor by sensor. For each device,
a separate Python sheet has been written that aims to manage communication, data
interpretation and conversion properly. Each Python script is composed of functions that process
variables, interpret data, communicate with the sensor, check the bytes... Finally, after hours of
documentation readings, trial-and-errors, and online searches, the system succeeds in executing
a get _data () function that aims to make all the necessary steps in good order to get the data

from the sensor to the screen.

Each Python script generates a lot of messages printed on the screen. To store them for

further analysis, a logging system sort all the messages according to their importance in a

107

Software of the Seacanairy

dedicated log file. Message storing is an essential step in developing as we cannot wait for hours

in front of the screen for error.

All the sensors are gathered via seacanairy.py. This script starts the pump, call the
get data () functions of each sensor's Python script, and store all the data in a common comma-
separated values file at regular interval. A settings file called seacanairy settings.yaml
contains some sensor, sampling, and logging settings as well as sampling session names. In
function of that last setting, seacanairy.py will create a new folder with the sampling session

name to store the data and the sensors' log.

108

HZS

A4 seacanairy_project /home/pi/seacanairy project

> desktop_icon

v AFE_calibration
i CO_calib.yaml
‘E’“L NO2_calib.yaml

= OX_calib.yaml

YAML
—

= SO2_calib.yaml

YAML
—

=] temperature_calib.yaml

v sampling_session_name

sampling_session_name_data.csv
sampling_session_name_data.log
@ seacanairy.py

=) : :
el scacanairy_settings.yaml

& CO2.py

% CO2-debugging.log

& OPCN3.py

% OPCN3-debugging.log
& AFE.py

% AFE-debugging.log
@ GPS.py
% GPS-debugging.log

e flow.py
% flow-debugging.log
@ database.py

@ set_system_time.sh

Figure 72 Files used by the Raspberry Pi for the proper execution of the software

Source: own work

109

Conclusion

This work proposed a design for a transportable, watertight, autonomous measuring
instrument dedicated to measuring air quality onboard merchant ships that can be easily
calibrated coupling calibration bottles to the tubing system. The proposed instrument measures
sulfur oxides, nitrogen oxides, carbon oxides, ozone, particulate matter, temperature and
humidity. Equipped with a GPS receiver, it also registers the vessel's position and behaviour,
such as course or speed changes. Linked to an online database, it allows remote monitoring of

the measurement taken through an internet connection.

The use of several different sensors ensures a wide measuring range of pollutants. First,
a central computer connects the sensor to a Raspberry Pi via a printed circuit board. Then,
Python software runs to performs all measurements at regular intervals and stores the data in a
file. Next, a pump and a piping system bring the sampled air to the sensors. Using tubes makes
it possible to connect calibration bottles to improve the sensor's accuracy. Also, an extension
tube can be connected to measure the air from another place. Finally, all of the components are

installed in a waterproof case so that all the necessary components become one single unit.

During the development of the Seacamairy, an extensive list of smaller and more
significant problems have been encountered. Each of these problems had to be solved to have a
properly working instrument. After troubleshooting, the measuring campaign performed with

the device shows that the instrument is working.

111

Annexe 1
List of files

This document has been rendered with a compressed folder containing a series of files.

The list below mentions the files present.

e AFE_calibration
o CO_calib.yaml
o NO2_calib.yaml
o OX_calib.yaml
o SO2_calib.yaml
o Temperature_calib.yaml
AFE.py
CO2.py
database.py
flow.py
GPS.py
OPCN3.py
seacanairy.py
seacanairy_settings.py

set_system_time.sh

113

Annexe 2

Case panels dimensions

552 mm

A

R =10 mm

ww 7y

Figure 73 Lid and Base panel plan

Source: own measurements in the Pelican Case iM2720

115

Case panels dimensions

552 mm

140 mm 20 mrr:
> <>

ww ¢t
ww 77y

Figure 74 Bottom panel plan

Source : own measurements in the Pelican Case iM2720

116

Annexe 3

chematic of the Seacanairy

wiring

The following schematic is

available in full scale format on next page.

1 1 2 3 4 | 3
Raspberry Pi HAT
Sensors . itz .
e Faspberty Fi 38 HeT o
L i
3 Connection fn'r%e €02 sensor H

camnen 2.5%mm iteh

B male pin comnectar
40

Connection for the 4—AFE Board

& HFE bozre
Conn 02x06 Ddc

eang- -

[FEERREIEE]

e
[

e

=& any
s 2P3

op5

G
&

)

z

87 4
o] ErTI— b
5 3|

ci s an the right side I

4 5 cha

L TR e

7 che

chr

FITEN] S

Connection for the OPC—N3 sen
NS

khkarsss

o

19

Screw connectlons

Linear Power Supply |5¢ Additionnal Pawer Supply (optional)

. . at, iyt
g g HECRE)
Screw Termine 0402 = 1120150,
Bl
Pump relay MAC alrpump
Pumz_relay_criverl [E—
Seratiminel
- FLTI MELZ
s e _Temrinal
e
sLTa AL
T

Tokin Naisa Filier
Vgidrinal Lugs tzrminal

2P auTp
1 40 HaTp

Gl Dawer

Antwerp Maritime Academy

icsch
Title: Global Seacanairy electrical and electronical wiring
5 e 2l | Dule: 2021 02 00 Rev: 2
COA kicad (518} -7 40171

Figure 75 Seacanairy electronic and electric schematic

Source: own work using KiCad

117

1 2 | [| 5
S Raspberry Pi HAT
ensors BAT2
+3V3 Raspberry_Pi_3B+_HAT +5Y
=] 1 2
L 553 Er=
1260504 3 Lipigo e T
i2c5CL 5 lipins GND=——§|6 =
Connection for the CO2 sensor 12¢ Pull-Up Resistors 7 Lepioy TxDed8 UARTTX
coz ' L5y "o [XD L0 UART_RX GND
Comman 2.54mm pitch PCB male pin connector A=GP|017 PCM,CLK=£
GND pump_relay line 131 -5q57 DL
4 = 15 16
= A5Lcpio22 cric23Lit
3 120 DA 12c_pull_up_R1 12c_pull_up_R3 17 15
=3 12c50A Lsvs GPID24
2 i2esCL 10k 10k spi_MISO 191 o AN 20
—ﬁt]l 2 spLMOSI 2 Lyico gpioasq22
12¢_pull_up_R2 i2c_pull_up_R4 spLSCLK 25 Lse i ceop2h
+5V 10k 10k -25L6ND cea=p26
27i6pi00 GPIo12E
22 cpios GNDEL
2Licpios PWMo-{32-
231 pwm1 GNDEE
Connection for the 4—AFE Board 35locm Fs GPIoLe-35
4-AFE_boardi S716PI026 GPIO2043E
Conn_02x06_0dd_Even GN“DDC connection 39} 6nD GPIc2EfA0
S PT1000- 1 —— 2 PT1000+ éF
0P1 3 4 opP2 =]
|
IS i — | Screw connections
0P 7 8 ops oYE [vl pinouts |
= 9 10 0P7 : 3
= iy Ch0 Linear Power Suppl: Additionnal Power Supply {optional
§47D 0P7 11 12 oPg - g;g § el b eyl pply +5Y " pply {optional)
Ch2 Chis o ®|r Iy
The small block is on the right side OF4 [e chis Ll § = L Linear_P_supplyl + 2 ssre:_;:fnﬁi:amixoz
% Cht D Chi3 % ' S| Screw_Terminal_01x02 4
ﬁ Ch5 chiz ﬁ(e GND
o L) che Chit ﬁ
Ch7 Ch1o
0P1 91 che cho L& 220v

Connection for the OPC—N3 sensor
OPC_N3 HATL

MOLEX PicoClasp 01x06 1mm pitch PI16-ADC_Alchemy_Power—4—AFE_Board—cache

Connection for the RTC DS3231

+3V3
9 1
+i2c_SDA 2
i2c SCL 3 RTC_DS32311
4 Conn_01x05
2 5
=<
Connectlon for the GPS VMA430 s

GPS3
Common 2.54mm pitch PCB male pin connector

Connection for the Sensirion Mass Flow Meter
Sensirion_Mass_Flowl
Conn_02x04_0dd_Even

v

Main alimentation socket

Pump relay

AC P AC P L Pump_relay_driverl Relay_screwsl
Screw_Terminal
AC NAC N Power_sacketl gumg,retay,t‘me 1= SL2
Cann_WallPlug_Earth @ 0¥ 2 2 ACP
3 sl AC P relay

£, EART 12
& =

M&C airpump

© .
ACN 2 1g Air_pump_M&C2
ACP pump 3 |o Screw_Terminal

= .
+ .. Air_pump_M&C1
S S Screw_Terminal

GND
Main 5V power supply Linear Power Supply Tokin Noise Filter
+5VTr?s:0_fV_4LtransfurmEri +5YL TLasc;r_SV_lmEari Lugs_terminal Lugs_terminal
g ETEOTEL ace A g TR ace AC P relay 1 I3 S12 AC P pump
+ + AC N 2 I " J3. 1 Ac,N,:um:
k=1
2
2,2 3 ACN % 2 3 ACN g
GND GND
Cyril Dewez

Antwerp Maritime Academy

Sheet: /

File: Exemple pour rédaction.sch

Title: Global Seacanairy electrical and electronical wiring

Size: A4 | Date: 2021-08-09 Rev: 2
KiCad E.D.A. kicad (5.1.8)-1 Id: 1,/1
1 2 I [I 5 I

Annexe 4
Seacanairy PCB

Figure 76 Seacanairy PCB version 2.0 (current version)

Source: own work, using KiCad

119

Seacanairy PCB

N

© BRED2550505505060058 @
N
Al
M
| I 0)
——
:---11
@ 2.0,)

Figure 77 Seacanairy PCB version 3.0 (RTC DS3231 corrected)

Source: own work, using KiCad

120

Annexe 5

CO2.py

#! /home/pi/seacanairy project/venv/bin/python3
mmrn
Library for the use of E+E Elektronik EE894 COZ2 sensor via I?C

communication
mrrn

get the time
import time
from datetime import date, datetime

Get the errors
import sys

Create folders and files
import os

smbus2 is the new smbus, allow more than 32 bits writing/reading

from smbus2 import SMBus, i2c msg

'SMBus' is the general driver for i2c communication

'i2c msg' allow to make iZ2c write followed by iZ2c read WITHOUT any STOP
byte (see sensor documentation)

logging
import logging

yaml settings
import yaml

progress bar during sampling
from progress.bar import IncrementalBar

I2C address of the CO2 device
CO2 address = 0x33 # i2c address by default, can be changed (see sensor
doc)

emplacement variable

bus = SMBus (1) # make it easier to read/write to the sensor (bus.read or
bus.write...)

Get current directory
current working directory = str(os.getcwd())

121

CO2.py

with open(current working directory + '/seacanairy settings.yaml') as file:
settings = yaml.safe load(file)
file.close() # close the file after use

store debug messages = settings['CO2 sensor']['Store debug messages

(important increase of logs) ']
project name = settings['Seacanairy settings']['Sampling session name']

measurement delay = settings['CO2 sensor']['Amount of time required for the
sensor to take the measurement']

max_attempts = settings['CO2 sensor']['Number of reading attempts']
__

LOGGING SETTINGS

__

all the settings and other code for the logging
logging = tak a trace of some messages in a file to be reviewed afterward
(check for errors fe)

def set logger (message level, log file):
set up logging to file
logging.basicConfig (level=message level,
format='% (asctime)s % (name)-12s % (levelname)-8s
% (message)s',
datefmt="'%d-%m %H:%M',
filename=log file,
filemode="'a"')

logger = logging.getLogger ('CO2 sensor') # name of the logger

all further logging must be called by logger.'level' and not
logging. 'level'

if not, the logging will be displayed as 'ROOT' and NOT 'OPC-N3'

return logger

if name ==

CO2.py)
message_ level = logging.DEBUG # show ALL the logging messages
Create a file to store the log if it doesn't exist
log file = current working directory + "/log/CO2-debugging.log"
if not os.path.isfile(log file):
os.mknod(log file)

__main_ ': # if you run this code directly ($ python3

print ("CO2 Sensor DEBUG messages will be shown and stored in '" +
str(log file) + "'")
logger = set logger (message level, log file)

The following HANDLER must be activated ONLY if you run this code
alone

Without the 'if name == ' main ' condition, all the logging
messages are displayed 3 TIMES

(once for the handler in CO2.py, once for the handler in OPCN3.py,
and once for the handler in seacanairy.py)

define a Handler which writes INFO messages or higher to the
sys.stderr/display (= the console)
console = logging.StreamHandler ()
console.setLevel (message level)
set a format which is simpler for console use
formatter = logging.Formatter ('% (name)-12s: % (levelname)-8s
% (message)s')

122

HZS

tell the handler to use this format
console.setFormatter (formatter)

add the handler to the root logger
logging.getlLogger () .addHandler (console)

else: # if this file is considered as a library (if you execute
seacanairy.py for example)
1f the user asked to store all the messages in
'seacanairy settings.yaml'
if store debug messages:
message_ level = logging.DEBUG
1if the user don't want to store everything
else:
message level = logging.INFO
Create a file to store the log if it doesn't exist yet
log file = current working directory + "/" + project name + "/" +
project name + "-log.log"
logger = set logger (message level, log file)
no need to add a handler, because there is already one in
seacanairy.py

all further logging must be called by logger.'level' and not
logging. 'level'
if not, the logging will be displayed as ROOT and NOT 'CO2 sensor'

def loading bar (name, delay):
mmrn
Show a loading bar on the screen during a a certain amount of time
Make the user understand the software is doing/waiting for something
:param name: Text to be shown on the left of the loading bar (waiting,
sampling..)
:param length: Amount of time the system is waiting (seconds)
:return: nothing
mmrn
bar = IncrementalBar (name, max=(2 * delay), suffix='%(elapsed)s/' +
str(delay) + ' seconds')
for 1 in range (2 * delay):
time.sleep(0.5)
bar.next ()
bar.finish ()
return

def digest (buf) :

mrmrn

Calculate the CRC8 checksum (based on the COZ2 documentation example)
:param buf: List of bytes to digest [bytes to digest]
:return: checksum

o

Translation of the C++ code given in the documentation

crcVal = 0Oxff

_from = 0 # the first item in a list is named 0

_to = len(buf) # 1f there are two items in the 1list, then len() return
1 --> range (0, 1) = 2 loops

for i in range(from, to):
curVal = buf[i]

123

CO2.py

for j in range(0, 8): # C++ stops when J is not < 8 --> same for
python in range
if ((crcval ~ curVal) & 0x80) != 0:
crcVal = (crcvVal << 1) » 0x31
else:
crcVal = (crcVal << 1)
curVal = (curVal << 1) # this line is in the "for j" loop, not

in the "for 1" loop
checksum = crcvVal & Oxff # keep only the 8 last bits

return checksum

def check (checksum, data):
mrmn
Check that the data transmitted are correct using the data and the
given checksum
:param checksum: Checksum given by the sensor (see sensor doc)
:param List of bytes transmitted by the sensor before the checksum (see
sensor doc)
:return: True if the data are correct, False if not
mrrn
calculation = digest (data)
if calculation == checksum:
logger.debug ("CRC8 is correct, data are valid")
return True
else:
logger.debug ("CRC8 does not fit, data are wrong")
logger.error ("Checksum is wrong, sensor checksum: " + str (checksum)

", seacanairy checksum: " + str(calculation) +

14

", bytes returned:" 4+ str(data) + str(checksum))
if data[0] and data[l] ==
logger.debug ("Sensor returned 0 values, it is not ready,
waiting a little bit")
print ("Sensor not ready, waiting...", end='\r"'")
time.sleep (3)

return False

def status(print information=True) :
mrmrn
Read the status byte of the CO2 sensor
I'l' Tt will trigger a new measurement 1f the previous one 1s older than
10 seconds
:param: print information: Optional: False to hide the messages
:return: True 1if last measurement is OK, False if NOK
logger.debug ("Reading sensor status")
try:
with SMBus (1) as bus:
reading = read from custom memory (0x71, 1)
reading = bus.read byte data(CO2 address, 0x71)
see documentation for the following decryption
CO2 status = reading & 0b00001000
temperature status = reading & 0b00000010
humidity status = reading & 0b00000001
if print information: # if user/software indicate to print the
information

124

HZS

if CO2 status == 0:
logger.debug ("C0O2 status is OK")
else:
logger.warning ("CO2 status is NOK")
if temperature status == 0:
logger.debug ("Temperature status is OK")
else:
logger.warning ("Temperature is NOK")
if humidity status == 0:
logger.debug ("Humidity status is OK")
else:
logger.warning ("Humidity status is NOK")
if CO2 status or humidity status != 0:
Only CO2 status and humidity status, because for no known
reason temperature status is always NOK
return False
else:
Everything is OK
return True
except:
logger.critical ("Status reading failure")
return True # try to go ahead in all cases

def getRHT () :

mmrn

Read the last Temperature and Relative Humidity measured, process the
bytes, check checksum, convert in °C and $%RH
:return: Dictionary with the following items {"RH'", "temperature'"}

mrmrn

logger.debug ("Reading RH and Temperature from CO2 sensor")

write = i2c msg.write(CO2 address, [0xE0, 0x001]) # see documentation,
example for reading t° and RH
read = i2c_msg.read(CO2 address, 6)

attempts = 0 # trial counter for the checksum and the validity of the
data received

reading trials = 0 # trial counter for the i2c communication

In case there is a problem and it return nothing, return "error"

data = {
"relative humidity": "error",
"temperature": "error"

}

all the following code is in a loop so that if the checksum is wrong,
it start a new measurement
while attempts <= max attempts:

while reading trials <= max attempts: # reading loop, will try
again if the i2c communication fails
try: # SMBUS stop working in case of error, avoid the software

to crash in case of i2c error
with SMBus (l) as bus:
bus.i2c rdwr (write, read)
break # break the loop if the try has not failed at the
previous line, jump to the process of data

except: # what happens 1if the i2c fails

if reading trials == max attempts:
logger.critical ("i2c failure "

125

CO2.py

+ str(max_attempts) + "consecutive
times, skipping this RH and temperature reading")
return data # indicate clearly that data are wrong

logger.error ("i2c failure (" + str(sys.exc _info())
+ "), trying again... (" + str(reading trials
+ 1) + "/" 4+ str (max _attempts) + ")")
reading trials += 1 # increment of reading trials
time.sleep (3) # if transmission fails, wait a bit to try
again (sensor 1s maybe busy)

process the data given by the sensor
reading = list (read)
1f the two checksums are correct...
if check(reading[2], [reading[0], reading[l]]) and
check (reading[5], [reading[3], reading[4]]):
reading << 8 = shift bytes 8 times to the left, say
differently, add 8 times 0 on the right
temperature = round(((reading[0] << 8) + reading[1]) / 100 -

273.15, 2)

relative humidity = ((reading[3] << 8) + reading[4]) / 100
print ("Temperature is:", temperature, "°C", end="")
print ("\t| Relative humidity is:", relative humidity, "%RH")
Create a dictionary containing all the data
data = {

"relative humidity": relative humidity,

"temperature": temperature
}
return data

else: # if one or both checksums are not corrects

if attempts == max attempts:

logger.error ("Data were wrong "

+ str(max_attempts) + " consecutive times,

skipping this RH and temperature reading")
return data # indicate on the SD card that data are wrong

else:
attempts += 1
logger.warning ("Error in the data received (wrong
checksum), reading data again... ("
+ str(attempts) + "/" + str (max attempts) +
"))

time.sleep (4) # avoid to close 12c communication

def getCO2P () :

Read the last COZ2 instant, CO2 average and pressure measurements,
process the bytes, check checksum,

convert in hPa and ppm

:return: Dictionary containing the following items {"average",
"instant'", "pressure"}

mrmrn

logger.debug ('Reading of CO2 and pressure')
write = i2c _msg.write(CO2 address, [0xE0, 0x27]) # see documentation,

reading of COZ2 and pressure example
read = i2c msg.read(CO2 address, 9)

126

HZS

attempts = 0 # trial counter for the checksum and the validity of the
data received
reading trials = 0 # trial counter for the i2c communication

Create a dictionary containing the data, return "error" in case of
error

data = {
"average": "error",
"instant": "error",
"pressure": "error"

}

all the following code is in a loop so that if the checksum is wrong,
it start a new measurement
while attempts <= max attempts:

while reading trials <= max_attempts: # reading loop, will try
again i1f the i2c communication fails
try: # SMBUS stop working in case of error, avoid the software

to crash in case of 1i2c error
with SMBus (1) as bus:
bus.i2c_rdwr (write, read)
break # break the loop if the try has not failed at the
previous line, jump to the process of data

except: # what happens if the i2c fails

if reading trials == max attempts:
logger.critical ("i2c failure "
+ str(max attempts) + " consecutive
times, skipping CO2 and pressure reading (" +
str(sys.exc info()) + ")")

return data # indicate clearly that the data are wrong

logger.error ("i2c failure, trying again... (" +
str(sys.exc info()) + ")")

reading trials += 1 # increment of reading trials

print ("Waiting 3 seconds...", end='\r')

time.sleep(3) # if 1°C comm fails, wait a little bit and
try again (sensor 1is maybe busy)

process the data given by the sensor
reading = list (read)
1f the two checksums are correct...
if check(reading[2], [reading[0], reading[l]]) and
check (reading[5], [reading[3], reading[4]]) and check(
reading([8], [reading[6], reading[7]]):
pressure = (((reading[6]) << 8) + reading[7]) / 10 # reading
<< 8 = shift bytes 8 times to the left
print ("Pressure is:", pressure, "mbar")

CO2 average = (reading[0] << 8) + reading[1] # reading << 8 =
shift bytes 8 times to the left

print ("CO2 average is:", CO2 average, "ppm", end="")

CO2 raw = (reading[3] << 8) + reading[4]

print ("\t| CO2 instant is:", CO2 raw, "ppm")

data = {
"average": CO2_ average,
"instant": COZ raw,
"pressure": pressure

127

CO2.py

return data

else: # 1f one or both checksums are not corrects
if attempts == max attempts:
logger.error ("Error in the data received (wrong checksum),
skipping this CO2 and pressure reading")
return data # indicate clearly that the data are wrong

else:
attempts += 1
logger.warning ("Error in the data received (wrong
checksum), reading data again... (" +
str(attempts) + "/" + str(max attempts) +
"))

time.sleep (3) # avoid too close i12c communication

def get data():
mrmn
Get all the available data from the CO2 sensor (CO2 instant/average,
pressure, temperature, humidity
:return: Dictionary containing the following items
{"pressure", "temperature", "CO2 average", "COZ2 instant",
"relative humidity"}
mrmn
Read status byte
attempts = 1
while True:
i1f status (True):
break
else:
print ("Waiting for data to be ready...", end='\r')
time.sleep (2)
attempts += 1
if attempts >= 6:
print ("Sensor not ready, trying to read...", end='\r'")
break

H o F R R R HR FHR IR I

Get CO2 and pressure

datal = getCO2P ()

Get RH and temperature
data2 = getRHT ()

Append those two dictionary
datal.update (data2)

return datal

def internal timestamp (new_ timestamp=None) :
mrmrn
Read the internal sampling period of the COZ sensor
To change the value, write it between the brackets (in seconds)
:param new timestamp: None or empty to read, new value in seconds to
change it
:return: Actual internal sampling period of the sensor

mrrn

if new timestamp is not None: # if user write something as input in

128

HZS

the brackets (arguments)
if not 15 <= new_ timestamp <= 3600:
logger.warning ("Sampling period should be a number between 15
and 3600 seconds (see sensor documentation)")

to write = new timestamp * 10 # see sensor documentation
msb_ timestamp = (to _write & OxFF00) >> 8
lsb timestamp = (to _write & OxFF)

reading = write to custom memory (0x00, msb_ timestamp,
1sb timestamp)
else: # 1if user doesn't write anything between the brackets
reading = read from custom memory (0x00, 2)

if reading is not False: # read from custom memory () returns False 1in
case of error...
...Python crash if it tries to make calculations with a boolean
(True or False)
measuring time interval = (reading[l] + reading[0] * 256) / 10
if new timestamp is None: # adapt the message in function of the
wishes of the user (here he want to read)
logger.info ("Internal measuring time interval is " +
str(int (measuring time interval)) + " seconds")
else: # (here he want to write)
logger.info(
"Internal measuring time interval set successfully on " +
str(int (measuring time interval)) + " seconds")
return measuring time interval
else:
logger.error ("Failed to change the internal timestamp to " +
str(new_timestamp) + " seconds")

def trigger measurement (force=False):
Request a new COZ2, t°, pressure and RH measurement IF the previous one
is older than 10 seconds
Force to avoid the previous 10 seconds condition
Same function as 'status()'
:param: force: True to apply the function two consecutive times to be
sure that the sensor is well
synchronized with the seacanairy
False to apply it once (during the main loop of the
Seacanairy for example)
:return: True or False 1if status if OK or NOK

mrmrn

print ("Triggering a new measurement...", end='\r')

The sensor will not take a new sample if the previous one is older
than 10 seconds

sensor_ status = status(False) # trigger new measurement
if force: # if force is True
if measurement delay != 0: # if user/software want to wait for the

data to be ready

loading bar("Waiting for sensor sampling", measurement delay)
usually 10 seconds (see doc)

sensor documentation, let time to the sensor to perform the
measurement

That way, we ensure that the sensor will trigger a new
measurement RIGHT now

sensor status = status(False)

loading bar("Waiting for sensor sampling", measurement delay)

129

CO2.py

sensor documentation, let time to the sensor to perform the

measurement

return sensor_status # same function as 'status()', but here we don't

want to print the status on the screen

def read internal calibration(item):
mrmrn
Read the internal temp calib of a particular sensor item
:param item: indicate which internal temp calib to read:
humidity', 'temperature', 'pressure', 'C02', 'all'

'relative

:return: List containing the temp calib settings [offset, gain,
lower 1imit, upper limit]
mrmrn
if item == 'relative humidity':
index = 0x01
unit = "SRH"
factor = 1 / 100
elif item == 'temperature':
index = 0x02
unit = "Kelvin"
factor = 1 / 100
elif item == 'pressure':
index = 0x03
unit = "mbar"
factor = 1 / 10
elif item == 'CO2':
index = 0x04
unit = "ppm"
factor = 1
elif item == "all":
for 1 in ['relative humidity', 'temperature', 'pressure', 'C02']:
iterate this function for each parameter
read internal calibration (i)
time.sleep (0.5) # avoid too close i2c communication
return # exit the function once the iteration is finished
else:
raise TypeError ("Argument of read internal calibration is wrong,
must be: 'relative humidity', "
"'temperature', 'pressure', 'CO2' or 'all'"M)
reading = read from custom memory (index, 8)
if reading is False: # if read from custom memory () function doesn't

work, will return False...

logger.error ("Failed to read the internal temp calib of the CO2

sensor")
return False # indicate error
print (reading)

offset = (reading[0] << 8 + reading[l]) * factor
gain = (reading[2] << 8 + reading[3]) / 32768
lower limit = (reading[4] << 8 + reading[5]) # factor taken into

account further

upper limit = (reading[6] << 8 + reading[7]) # factor taken into

account further

logger.info ("Reading temp calib for " + str(item) + ":")

logger.info ("\tOffset: " + str(offset) + " " + str(unit))
logger.info ("\tGain: " + str(gain))
if lower limit == OxFFFF:

logger.info ("\tNo last lower limit adjustment")

130

HZS

lower limit = 0
else:

lower limit += factor

logger.info ("\tLower limit: " + str(lower limit) + " " + str(unit))
if upper limit == OxFFFF:

logger.info ("\tNo last upper minute adjustment')

upper limit = 0
else:

upper limit *= factor

logger.info ("\tUpper limit: " + str(upper limit) + " " + str(unit))
return [offset, gain, lower limit, upper limit]

def read from custom memory(index, number of bytes):

mmrn

Read bytes from specified custom memory address in the C0O2 sensor
internal memory

:param index: index of the data to be read (see sensor doc)

:param number of bytes: number of bytes to read (see sensor doc)

:return: list[bytes] from right to left

mmrn

logger.debug ("Reading " + str(number of bytes) + " bytes from customer
memory at index " + str(hex(index)) + "...")

write = i2c msg.write(CO2 address, [0x71, 0x54, index]) # usual bytes
to send/write to initiate the reading

attempts = 1

read = [] # avoid return issue

while attempts < 4:
try:
with SMBus (1) as bus:
bus.i2c_ rdwr (write)
read = i2c _msg.read(CO2 address, number of bytes)
with SMBus (1) as bus:
bus.iZ2c_ rdwr (read)
break # break the trial loop if the above has not failed
except: # if i2c communication fails
if attempts >= 3:
logger.warning ("i2c communication failed 3 times while
writing to customer memory, skipping reading")
return False # indicate that the writing process failed,
exit this function
else:
logger.error ("i2c communication failed to read from
customer memory (" + str(attempts) + "/3)")
attempts += 1
print ("Waiting 3 seconds...", end='\r'")
time.sleep (3) # avoid too close i2c communication, let
time to the sensor, may be busy

reading = list (read)

logger.debug ("Reading from custom memory returned " + str(reading))
return reading

def write to custom memory(index, *bytes to write):
Write data to a custom memory address in the COZ2 sensor internal memory
:param index: index of the customer memory to write (see sensor doc)
:param bytes to write: unlimited amount of bytes to write into the
internal custom memory at index (see sensor doc)
:return: True (Success) or False (Fail)

131

CO2.py

mrrn

logger.debug ("Writing " + str(bytes to write) + " inside custom memory
at index " + str(hex(index)) + "...")

crc8 = digest([index, *bytes to write]) # calculation of the CRCS8
based on the index number and all the bytes sent

attempts = 1 # trial counter for writing into the customer memory

cycle = 1 # trial counter for i2c communication

try:

with SMBus (l) as bus:
write = i2c_msg.write(CO2 address, [0x71, 0x54, index,

*bytes to write, crc8]) # see sensor doc

bus.i2c_ rdwr (write)

logger.debug ("i2c writing succeeded")

i2c writing function worked, and sensor didn't replied a NACK
on the SCK line

(see 12c working principle/theory)

except:
logger.critical ("i2c failure while writing to custom memory")
return False

check that the data are written correctly
time.sleep (0.3)
reading = read from custom memory (index, len(bytes to write))

if reading == [*bytes to writel: # because reading returns a list
logger.debug ("Success in writing " + str(bytes to write) + " inside
custom memory at index " + str(index))

return reading # indicate that the writing process succeeded

else:
logger.error("Failed in writing " + str(bytes to write) + " inside
custom memory at index " + str (hex(index)))
logger.debug ("Value read is " + str(reading) + " in place of " +
str(bytes to write))

name = ' main ' indicate that the Python sheet has been executed
directly

in opposition with name = ' (CO2 ' when the Python sheet is executed
as a library from another Python sheet

What is below will be executed if user execute this Python code directly
($ python3 CO2.py)
Code below is used to make trials to the CO2 sensor while developing

if name == ' main_ ':
now = datetime.now ()
logger.info("--—--""""""""""""""""""""""-"-"-"-"-"—-"—~—— ")y # add a line in
the log file
logger.info ("Launching a new execution on the " +

str(now.strftime ("%$d/%m/%Y $H:%M:%S")))
print ("Reading internal timestamp")
internal timestamp ()

trigger measurement (force=True)

while True: # unstopped loop

132

HZS

get data()
print ("waiting 10 seconds...")
time.sleep(10) # wait 10 seconds

133

Annexe 6

OPCN3.py

#! /home/pi/seacanairy project/venv/bin/python3

mrrn

Library for the use and operation of the Alphasense OPC-N3 sensor

mrrn

import codecs

import spidev # driver for the SPI/serial communication

import time

import struct # to convert the IEEE bytes to float

import datetime

import sys

import os # to create folders/files and read current path

from progress.bar import IncrementalBar # beautiful progress bar during
sampling

import RPi.GPIO as GPIO # used for CS (Chip Select line)

import logging # save logger messages into memory

yaml settings
import yaml # read user settings

,,

YAML SETTINGS

__

Get current directory

current working directory = str(os.getcwd())

with open (current working directory + '/seacanairy settings.yaml') as file:
settings = yaml.safe load(file)

file.close()

store debug messages = settings['CO2 sensor']['Store debug messages
(important increase of logs) ']

project name = settings['Seacanairy settings']['Sampling session name']
OPC_flushing time = settings['OPC-N3 sensor']['Flushing time']
OPC_sampling time = settings['OPC-N3 sensor']['Sampling time']

take new sample if checksum is wrong = \

settings['OPC-N3 sensor'] [
'Take a new measurement if checksum is wrong (avoid shorter
sampling periods when errors) ']

134

all the settings and other code for the logging
logging = keep a trace of some messages in a file to be reviewed
afterward (check for errors f-e)

def set logger (message level, log file):
set up logging to file
logging.basicConfig(level=message level,
format='% (asctime)s % (name)-12s % (levelname)-8s
% (message)s',
datefmt="'%d-%m %SH:%M',
filename=log file,
filemode='a")

logger = logging.getLogger ('OPC-N3'") # name of the logger

all further logging must be called by logger.'level' and not
logging. "level'

1f not, the logging will be displayed as 'ROOT' and NOT 'OPC-N3'

return logger

if name == "' main ': # if you run this code directly (§ python3
CO02.py)

message level = logging.DEBUG # show ALL the logging messages

Create a file to store the log if it doesn't exist

log file = current working directory + "/log/OPCN3-debugging.log" #
complete file location required for the Raspberry

if not os.path.isfile(log file):

os.mknod(log file)

print ("DEBUG messages will be shown and stored in '" + str(log file) +
"l")

logger = set logger (message level, log file)

define a Handler which writes INFO messages or higher to the
sys.stderr/display

console = logging.StreamHandler ()

console.setLevel (message level)

set a format which is simpler for console use

formatter = logging.Formatter ('S% (name)-12s: % (levelname)-8s
% (message)s')

tell the handler to use this format

console.setFormatter (formatter)

add the handler to the root logger

logging.getLogger () .addHandler (console)

else: # if this file is considered as a library (if you execute
'seacanairy.py' for example)
it will only print and store INFO messages and above in the
corresponding log file
if store debug messages:
message_ level = logging.DEBUG
else:
message level = logging.INFO
log file = current working directory + "/" + project name + "/" +
project name + "-log.log"
no need to add a handler, because there is already one 1in
seacanaliry.py
logger = set logger (message level, log file)

135

OPCN3.py

configuration of the Serial communication to the sensor

bus = 0 # name of the SPI bus on the Raspberry Pi 3B+, only one bus

device = 0 # name of the SS (Slave Selection) pin used for the OPC-N3

spi = spidev.SpiDev () # enable SPI (SPI must be enable in the RPi settings
beforehand)

spi.open(bus, device) # open the spi port at start

spi.max speed hz = 307200 # must be between 300 and 750 kHz

Personal experiment shown that UART and SPI speeds must be multiple

UART baud rate is 9600 for the GPS sensor

9600 * 2 * 2 * 2 * 2 * 2 = 307200

If not, both sensor data are corrupted

If not, OPCN3 returns alternately int (48) = hex(0x30) = bytes(00110000)
spi.mode = 0b01 # bytes (0b01) = int (1) --> SPI mode 1

first bit (from right) = CPHA = 0 --> data are valid when clock is rising
second bit (from right) = CPOL = 0 --> clock is kept low when idle
wait 10 milli = 0.015 # 15 ms

wait 10 micro = le-06

wait reset SPI buffer = 3 # seconds

time available for initiate transmission = 10 # seconds - timeout for SPI
response

if the sensor is disconnected, it can happen that the RPi wait for its
answer, which never comes...
avoid the system to wait for unlimited time for that answer

CS (chip selection) manually via GPIO - NOT CURRENTLY USED, to switch the
OPCN3 CS line manually up and down

GPIO.setmode (GPIO.BCM) # use the GPIO names (GPIOl...) instead of the
processor pin name (BCM...)

CS = 25 # GPIO number in which CS is connected

GPIO.setup(CS, GPIO.OUT, initial=GPIO.HIGH)

def cs high (delay=0.010) :
""mclose communication with OPC-N3 by setting CS on HIGH"""
time.sleep (delay)
GPIO.output (CS, GPIO.HIGH)
time.sleep (delay)

def cs low(delay=0.010) :
"""Open communication with OPC-N3 by setting CS on LOW"""
time.sleep (delay)
GPIO.output (CS, GPIO.LOW)
time.sleep (delay)

o e R R W W R KR R R

def initiate transmission (command byte):
mrmrn
Initiate SPI transmission to the OPC-N3
First loop on the manufacturer's flow Chart
:param command byte: byte to be sent during communication initiation
:return: True when SPI initiation has been done, False if it failed
mrrn
attempts = 0 # sensor is busy loop
cycle = 1 # SPI buffer reset loop (going to the right on the

136

HZS

flowchart)

logger.debug ("Initiate transmission with command byte " +
str (hex (command byte)))

stop = time.time() + time available for initiate transmission
time in seconds at which we consider it took too much time to answer

cs low() # not used anymore

while time.time () < stop:
logger.debug ("attempts = " + str(attempts)) # disable to reduce
the amount of time between spi.xfer
reading = spi.xfer([command byte]) # initiate control of power
state

spi.xfer() means write a byte AND READ AT THE SAME TIME

if reading == [243]: # SPI ready = 0xF3 = 243 = 0b11110011
time.sleep(wait 10 micro)
return True # indicate that the initiation succeeded

if reading == [49]: # SPI busy = 0x31 = 49
time.sleep(wait 10 milli)
attempts += 1

elif reading == [230] or reading == [99] or reading == [0]:
During developing, I noticed that these were the answers
given by the sensor when the CS line was
facing troubles.
This comes from personal experiment and not from the official
documentation
To resolve it, try connecting the CS line directly to the
ground (current setting)
logger.critical ("Problem with the SS (Slave Select) line "
"(error code " + str (hex(reading[0])) + "),
skipping™)
cycle += 1
logger.debug ("Check that SS line is well kept DOWN (0V) during
transmission."
" Try again by connecting SS Line of sensor to
Ground")
print ("Waiting SPI Buffer reset (" + str(reading) + ")",
end="\r")
time.sleep(wait reset SPI buffer)
return False

else:
logger.critical (
"Failed to initiate transmission (unexpected code returned:
" + str(hex(reading[0])) + ") (" + str(
cycle) + "/3)")

print ("Waiting SPI Buffer reset (" + str(reading) + ")",
end="\r")

time.sleep(wait reset SPI buffer)

cycle += 1 # increment of attempts

attempts = 0

if attempts > 60:
it is recommended to use > 20 in the Alphasense documentation
After experiment it seems that 60 is a good value
(does not take too much time, and let some chance to the

137

OPCN3.py

sensor to answer READY)

logger.error ("Failed 60 times to initiate control of power
state, reset OPC-N3 SPI buffer, trying again")

cs _high()

print ("Waiting SPI Buffer reset (" + str(reading) + ™)",
end="\r")

time.sleep(wait reset SPI buffer) # time for spi buffer to
reset

attempts = 0 # reset the "SPI busy"” loop
cycle += 1 # increment of the SPI reset loop
cs_low()

if cycle >= 3:
logger.critical ("Failed to initiate transmission (reset 3 times
SPI, still error)")
return False

logger.critical ("Transmission initiation timeout (> "
+ str(time available for initiate transmission) + "
secs)")
return False # function depending on initiate transmission function
will not continue, indicate error

def fan off():
mn H_
Turn OFF the fan of the OPC-N3
:return: False 1if it succeeded turning off the fan, True if it failed
mrrn
print ("Turning fan OFF", end='\r')
logger.debug ("Turning fan OFF")
attempts = 1

while attempts < 4:
logger.debug ("attempts = " + str(attempts)) # disable to reduce
the amount of time between spi.xfer
if initiate transmission (0x03):
reading = spi.xfer ([0x02])
cs high()
spi.close() # close the serial port to let it available for
another device
Avoid opening and closing ports too ofter.
Avoid getting "too much files opened" error after long
running time
if reading == [0x03]: # official answer of the OPC-N3
print ("Fan is OFF ")
time.sleep(0.5) # avoid too close communication (AND let
some time to the OPC-N3 to stop the fan)
return False
else:
time.sleep (1) # let some time to the OPC-N3 (to try to
stop the fan)
reading = read DAC power status('fan')
if reading ==
return False
elif reading ==
attempts += 1
logger.warning ("Failed to stop the fan, trying
again...")
print ("Waiting SPI Buffer reset", end='\r')
time.sleep(wait reset SPI buffer)

138

HZS

else:
attempts += 1
print ("Waiting SPI Buffer reset", end='\r'")
time.sleep(wait reset SPI buffer)
if attempts >= 3:
logger.critical ("Failed 3 consecutive times to stop the
fan")
return True
else:
logger.critical ("Failed to stop the fan (transmission
problem) ™)
return True
return True

def fan on():
mnmn "_
Turn ON the fan of the OPC-N3
:return: True 1if it succeeded turning off the fan, False if it failed
mrrn
print ("Turning fan ON", end='\r')
logger.debug ("Turning fan ON")

attempts = 1

while attempts < 4:
logger.debug ("attempts = " + str(attempts)) # disable to reduce
the amount of time between spi.xfer
if initiate transmission(0x03):
logger.debug ("attempts = " + str(attempts))
reading = spi.xfer ([0x03])
cs _high()
spi.close () # close the serial port to let it available for
another device
Avoid opening and closing ports too ofter.
Avoid getting "too much files opened" error after long
running time
time.sleep(0.6) # walit > 600 ms to let the fan start
if reading == [0x03]: # official answer of the OPC-N3
print ("Fan is ON ")
time.sleep(0.5) # avoid too close communication
return True # indicate that fan has started
else:
time.sleep(l) # let time to the OPC-N3 to try to start the
fan
reading = read DAC power status('fan')
if reading == 1:
return True # indicate that fan has started
elif reading == 0:
logger.error ("Failed to start the fan...")
attempts += 1
print ("Waiting SPI Buffer reset", end='\r'")
time.sleep(wait reset SPI buffer)
else:
attempts += 1
print ("Waiting SPI Buffer reset", end='\r'")
time.sleep(wait reset SPI buffer)
if attempts >= 3:
log = "Failed 3 consecutive times to start the fan"
logger.critical (log)
return False # indicate that fan is OFF
else:

139

OPCN3.py

logger.critical ("Failed to start the fan (transmission
problem)™)
return False
return True

def laser on{():
mrrn -
Turn ON the laser of the OPC-N3
:return: True 1if it succeeded turning off the laser, False 1if it failed
mrrn
print ("Turning laser ON", end='\r')
logger.debug ("Turning laser ON")
attempts = 0

while attempts < 4:
logger.debug ("attempts = " + str(attempts)) # disable to reduce
the amount of time between spi.xfer
if initiate transmission(0x03):
reading = spi.xfer ([0x07])
cs _high()
spi.close() # close the serial port to let it available for
another device
Avoid opening and closing ports too ofter.
Avoid getting "too much files opened" error after long
running time

if reading == [0x03]:
print ("Laser is ON ")
time.sleep(.5) # avoid too close communication
return True # indicate that the laser is ON
else:

time.sleep(l) # let time to the OPC-N3 to try to start the
laser
reading = read DAC power status('laser')
if reading ==
logger.info ("Wrong answer received after SPI writing,
but laser is well on")
return True # indicate that the laser is ON
elif reading ==
logger.error ("Failed to start the laser, trying

again...")
attempts += 1
print ("Waiting SPI Buffer reset", end='\r')
time.sleep(wait reset SPI buffer)
else:
attempts += 1
print ("Waiting SPI Buffer reset", end='\r')
time.sleep(wait reset SPI buffer)
if attempts >= 3:
logger.critical ("Failed 3 consecutive times to start the
laser™")
return False # indicate that laser is still off
else:
logger.critical ("Failed to start the laser (transmission
problem)™)

return False
return False

def laser off():

mrrn

Turn OFF the laser of the OPC-N3

140

HZS

:return: False if it succeeded turning off the laser, True 1if it failed
mrmrn

print ("Turning the laser OFF", end='\r')

logger.debug ("Turning laser OFE")

attempts = 0

while attempts < 4:
logger.debug ("attempts = " + str(attempts)) # disable to reduce
the amount of time between spi.xfer
if initiate transmission(0x03):
reading = spi.xfer ([0x06])
cs_high()
spi.close() # close the serial port to let it available for
another device
Avoid opening and closing ports too ofter.
Avoid getting "too much files opened" error after long
running time
if reading == [0x03]:
print ("Laser is OFF ")
time.sleep(l) # avoid too close communication
return False
else:
time.sleep (1) # let time to the OPC-N3 to try to stop the
laser
reading = read DAC power status('laser')
if reading == 0:
logger.info ("Wrong answer received after writing, but
laser is well off")
return False
elif reading == 1:
logger.error ("Failed to stop the laser (code returned
is " + str(reading) + "), trying again...")
attempts += 1
print ("Waiting SPI Buffer reset", end='\r')
time.sleep(wait reset SPI buffer)
else:
attempts += 1
print ("Waiting SPI Buffer reset", end='\r')
time.sleep(wait reset SPI buffer)
if attempts >= 3:
logger.critical ("Failed 4 times to stop the laser")
return True # indicate that laser is still on
else:
logger.critical ("Failed to stop the laser (transmission
problem) ™)
return True
return True

def read DAC power status(item='all'):

Read the status of the Digital to Analog Converter as well as the Power
Status
Try only one time to read the byte(s)
:param item: 'fan', 'laser', fanDAC', 'laserDAC', 'laser switch',
'gain', 'auto gain toggle', 'all'
:return: DAC power byte, 5 status bytes if argument is 'all'
print ("Reading DAC power status", end='\r')
if initiate transmission(0x13):
response = spi.xfer([0x13, O0x13, O0x13, 0x13, 0x13, 0x13])
cs _high()

141

OPCN3.py

spi.close() # close the serial port to let it available for
another device

Avoid opening and closing ports too ofter.

Avoid getting "too much files opened" error after long running
time

time.sleep (0.5) # avolid too close communication

if item == 'fan':
logger.debug ("DAC power status for " + str(item) + " is " +
str (response[0]))
return response[0]
elif item == 'laser':
logger.debug ("DAC power status for " + str(item) + " is " +
str (response[1l]))
return response[l]
elif item == 'fanDAC':
logger.debug ("DAC power status for " + str(item) + " is " +
str (response[2]))

response = 1 - (response([2] / 255) * 100 # see documentation
concerning fan pot
logger.info("Fan is running at " + str(response) + "% (0 =

slow, 100 = fast)")
return response
elif item == 'laserDAC':
logger.debug ("DAC power status for " + str(item) + " is " +
str (response[3]))
response = response[3] / 255 * 100 # see documentation
concerning laser pot

logger.debug ("Laser is at " + str(response) + "% of its maximal

power")
return response
elif item == 'laser switch':
logger.debug ("DAC power status for " + str(item) + " is " +
str (response([4]))
return response[4]
elif item == 'gain':
response = response[5] & 0x01
logger.debug ("DAC power status for " + str(item) + " is " +
str (response))
return response
elif item == 'auto gain toggle':
response = response[5] & 0x02
logger.debug ("DAC power status for " + str(item) + " is " +
str (response))
return response
elif item is 'all':

logger.debug ("Full DAC power status is " + str(list(response)))

return response
else:
raise ValueError ("Argument of 'read ADC power status' is
unknown, check your code!")

else:
print ("Waiting SPI Buffer reset", end='\r')
time.sleep(wait reset SPI buffer)
return False # indicate an error

def digest (data):

mrrn

Calculate the CRC8 Checksum with the bytes received

:param data: list containing an infinite number of bytes with which to

142

HZS

calculate the checksum
rreturn: calculated checksum

mrmrn

crc = OxFFFF

for byteCtr in range (0, len(data)):
to _xor = int(datalbyteCtr])
crc "= to_xor
for bit in range (0, 8):
if (crc & 1) == 1:
crc >>= 1
crc = 0xA001
else:
crc >>= 1
log = "Checksum is " + str(crc)
logger.debug (log)
return crc & OxFFFF

def check (checksum, *data):

mrrn
Check that the data received are correct, based on those data and the

checksum given
:param checksum: checksum sent by the sensor (the last byte in any

transmission)
:param data: bytes sent by the sensor, with which to calculate the

checksum
:return: True if data are corrects, False if they are not

to_digest = []

for i in data:
to digest.extend(i)

if digest(to_digest) == join bytes (checksum):
log = "Checksum is correct"
logger.debug (log)
return True

else:
log = "Checksum is wrong"
logger.debug (log)
return False

def convert IEEE754 (value) :

mrmrn

Join bytes and convert them to float according to the IEEE754
encryption

:param value: list containing the two bytes to decrypt

:return: decrypted float

mrmrn

value = join bytes (value)

answer = struct.unpack('f', bytes(value))
return answer

def loading bar (name, delay):

o

Show a loading bar on the screen during a certain amount of time.
Make the user understand the software is doing/waiting for something
:param name: text to be shown on the left of the loading bar (waiting,

sampling...)
:param delay: amount of time the system is waiting (seconds)

:return: nothing

143

OPCN3.py

mrrn

bar = IncrementalBar (name, max=(2 * delay), suffix='S$(elapsed)s/' +
str (delay) + ' seconds')
for i in range(2 * delay):
time.sleep(0.5)
bar.next ()
bar.finish{()
return

def PM reading():
Read the PM bytes only from the OPC-N3 sensor
Read the data and convert them in readable format, checksum enabled
Does neither start the fan nor start the laser
Recommended to use read histogram() instead of this function
:return: List[PM 1, PM2.5, PMI10]
print ("YOU SHOULD BETTER USE OPCN3.read histogram()")
attempts = 1
while attempts < 4:
if initiate transmission(0x32):
PM A = spi.xfer([0x32, 0x32, 0x32, 0x32])
PM B = spi.xfer ([0x32, 0x32, 0x32, 0x32])
PM C = spi.xfer ([0x32, 0x32, 0x32, 0x32])
checksum = spi.xfer ([0x32, 0x32])
spi.close()

PM1 = round(struct.unpack('f', bytes(PM A)) [0], 3)
PM25 = round(struct.unpack('f', bytes(PM B)) [0], 3)
PM10 = round(struct.unpack('f', bytes(PM C)) [0], 3)

if check(checksum, PM A, PM B, PM C):
print ("PM 1:", PM1, "mg/m3\t|\tPM 2.5:", PM25,
"mg/m3\t|\tPM10:", PM10, "mg/m3")
time.sleep (0.5) # avoid too close SPI communication
return [PM1, PM25, PM10]
if attempts >= 4:

log = "PM data wrong 3 consecutive times, skipping PM
measurement"
logger.critical (log)
return ["error", "error", "error"]
else:
attempts += 1
log = "Checksum for PM data is not correct, reading again

(" + str(attempts) + "/3)"
logger.error (log)
time.sleep(0.5) # avoid too close SPI communication

def getPM(flushing time, sampling time, start fan laser=True):

Get PM measurement from OPC-N3

Recommended to use get data () instead of this function

:param flushing time: time (seconds) during which the fan runs alone to
flush the sensor with fresh air

:param sampling time: time (seconds) during which the laser reads the
particulate matter in the air

:return: List[PM1, PM2.5, PM10]

mrrn

print ("YOU SHOULD BETTER USE OPCN3.read histogram()")

try:

144

HZS

if start fan laser:
fan on ()
time.sleep (flushing time)
laser on{()
print ("Starting sampling"”) # will be printed on the same line as
"Laser is ON"
time.sleep(sampling time)
PM = PM reading()

laser off ()
fan off ()
except SystemExit or KeyboardInterrupt: # to stop the laser and the
fan in case of error or shutting down the program
laser off()
fan off ()
raise
return PM

def read histogram(sampling period, delete previous=True) :

mmrn

Read all the available data from the OPC-N3

It first read the histogram to remove the old data remaining in the
OPCN3 buffer

Then it let the sensor take sample during the defined sampling period

Finally it read a last time the histogram data returned by the sensor

It decode the bytes returned into readable format

It returns everything in a dictionary

:param: sampling period: amount of time (seconds) during while the fan
is running and laser 1is sampling

:return: Dictionary{"PM 1", "PM 2.5", "PM 10", "temperature", "relative
humidity'", "bin'", "MToF'", "sampling time",

"sample flow rate", "reject count glitch", "reject count
longTOF", "reject count ratio”,
"reject count out of range", '"fan revolution count",

"laser status'}

mmrn

logger.debug ("Reading histogram...")

print ("Reading histogram...", end='\r')

Create a dictionary containing data to be returned in case of error
to return = {
"PM 1": "error",
"PM 2.5": "error",
"PM 10": "error",
"temperature": "error",
"relative humidity": "error",
"sampling time": "error",
"sample flow rate": "error",
"reject count glitch": "error",
"reject count long TOF": "error",
"reject count ratio": "error",
"reject count out of range": "error",
"fan revolution count": "error",
"laser status": "error",
"bin 0": "error",
"bin 1": "error",
"bin 2": "error",
"bin 3": "error",
"bin 4": "error",
"bin 5": "error",
"bin 6": "error",

145

OPCN3.py

"bin 7": "error",
"bin 8": "error",
"bin 9": "error",
"bin 10": "error",
"bin 11": "error",
"bin 12": "error",
"bin 13": "error",
"bin 14": "error",
"bin 15": "error",
"bin 16": "error",
"bin 17": "error",
"bin 18": "error",
"bin 19": "error",
"bin 20": "error",
"bin 21": "error",
"bin 22": "error",
"bin 23": "error",
"bin 1 MToF": "error",
"bin 3 MToF": "error",
"bin 5 MToF": "error",
"bin 7 MToF": "error"

}

Delete old histogram data and start a new one
if delete previous:
if initiate transmission (0x30):
answer = spi.xfer ([0x00] * 86)
logger.debug ("SPI reading is:\r" + str (answer))
spi.close()
logger.debug ("Old histogram in the OPC-N3 deleted, starting a

new one")
else:
logger.critical ("Failed to initiate histogram, skipping this
measurement")
return to return # indicate clearly an error in the data
recording

delay = sampling period * 2 # you must wait two times the
sampling period in order that

the sampling time given by the OPC-N3 respects your sampling time
wishes

first 5 seconds are with low gain, and the next seconds are with high
gain (automatically performed by OPC-N3)

print (" ", end="'\r') #
remove last line

Reading the histogram delete all the data in the OPCN3's buffer
If the checksum is wrong, seacanairy don't get the data as expected
Nevertheless, OPCN3 clean its buffer and all data are lost
So you must wait another x seconds to get sample
if not take new sample if checksum is wrong:
loading bar ('Sampling PM', delay)

attempts = 1 # reset the counter for next measurement
while attempts < 4:
If the user want to take a nex sample in case the checksum is
wrong (see explanation above), then
the system must wait the required amount of time in the reading
loop
if take new sample if checksum is wrong:
loading bar ('Sampling PM', delay)

146

HZS

if initiate transmission(0x30):

checksums

read all the bytes and store them in a dedicated variable
see sensor documentation for more info

bin = spi.xfer ([0x00] * 48)

MToF = spi.xfer ([0x00] * 4)

sampling time = spi.xfer ([0x00] * 2)

sample flow rate = spi.xfer([0x00] * 2)
temperature = spi.xfer ([0x00] * 2)

relative humidity = spi.xfer ([0x00] * 2)

PM A = spi.xfer ([0x00] * 4)

PM B = spi.xfer ([0x00] * 4)

PM C = spi.xfer ([0x00] * 4)

reject count glitch = spi.xfer ([0x00] * 2)
reject count 1longTOF = spi.xfer ([0x00] * 2)
reject count ratio = spi.xfer([0x00] * 2)

reject count Out Of Range = spi.xfer ([0x00] * 2)
fan rev _count = spi.xfer([0x00] * 2)

laser status = spi.xfer([0x00] * 2)

checksum = spi.xfer ([0x00] * 2)

spi.close()

check that the data transmitted are correct by comparing the

1if the checksum is correct, then proceed...
if check(checksum, bin, MToF, sampling time, sample flow rate,

temperature, relative humidity,

PM A, PM B,
PM C, reject count glitch, reject count longTOF,

reject count ratio, reject count Out Of Range,

fan rev count, laser status):

logger.debug ("SPI reading is:\r" + str(bin) + " " +

str (MToF) + " " + str(sampling time)

+ " " + str(sample flow rate) + " " +
str (temperature) + " " + str(relative humidity)

+ " " 4+ str(PM A) + " " + Str(PM B) + " " +
str(PM C) + " " 4+ str(reject count glitch)

+ " " 4+ str(reject count longTOF) + " " +
str(reject count ratio) + " "

+ str(reject count Out Of Range) + " " +
str (fan rev count)

+ " " + str(laser status))

below

return TRUE 1f the data are correct, and execute the

decode the bytes according to the IEEE 754 32 bytes

floating point format into decimals

rounding until 2 decimals, as this is the accuracy of the

OPC-N3 for PM values

PM1 = round(struct.unpack('f', bytes(PM A)) [0], 2)
PM25 = round(struct.unpack('f', bytes(PM B)) [0], 2)
PM10 = round(struct.unpack('f', bytes(PM C)) [0], 2)
print ("PM 1:\t", PM1, " mg/m3", end="\t\t|\t")
print ("PM 2.5:\t", PM25, " mg/m3", end="\t\t|\t")
print ("PM 10:\t", PM10, " mg/m3")

relative humidity = round (100 *

(join bytes(relative humidity) / (2 ** 16 - 1)), 2)

(2 ** 16

temperature = round(-45 + 175 * (join bytes (temperature) /
1)), 2) # conversion in °C
print ("Temperature:", temperature, " °C (PCB Board) \t|

\tRelative Humidity:", relative humidity,

" $RH (PCB Board)")

147

OPCN3.py

sampling time = join bytes(sampling time) / 100

print (" Sampling period:", sampling time, "seconds",
end="\t\t|\t")

sample flow rate = join bytes (sample flow rate) / 100

print (" Sampling flow rate:", sample flow rate, "mL/s [",
round (sample flow rate * 60, 2), "mL/min |",

round (sample flow rate * 60 * 60 / 1000, 2), "L/h™)
This is the amount of air passing through the laser beam,
not the total sampling flow rate!

reject count glitch = join bytes(reject count glitch)
print (" Reject count glitch:", reject count glitch,
end="\t\t|\t")
reject count longTOF = join bytes(reject count 1longTOF)
print (" Reject count long TOF:", reject count 1longTOF)
reject count ratio = join bytes(reject count ratio)
print (" Reject count ratio:", reject count ratio,
end="\t\t|[\t")
reject count Out Of Range =
join bytes(reject count Out Of Range)
print (" Reject count Out Of Range:",
reject count Out Of Range)
fan rev count = join bytes(fan rev count)
print (" Fan revolutions count:", fan rev count,
end="\t\t|\t")
laser status = join bytes(laser status)
print (" Laser status:", laser status)

to return = {

"pM 1": PML1,

"PM 2.5": PM25,

"pPM 10": PM1O,

"temperature": temperature,

"relative humidity": relative humidity,

"sampling time": sampling time,

"sample flow rate": sample flow rate,

"reject count glitch": reject count glitch,

"reject count long TOF": reject count longTOF,

"reject count ratio": reject count ratio,

"reject count out of range": reject count Out Of Range,

"fan revolution count": fan rev count,

"laser status": laser status,

"bin 0": join bytes(bin[0:1]),

"bin 1": join bytes(bin[2:3]),

"bin 2": join bytes(bin[4:5]),

"bin 3": join bytes(bin[6:7])

"bin 4": join bytes(bin[8:9])
"bin 5": join bytes (bin
(
(
(

4

— e s e

10:111),
"bin 6": join bytes(bin[12:13]),
"bin 7": join bytes(bin[14:15]),
"bin 8": join bytes(bin[l6:17]),
"bin 9": join bytes(bin[18:19]
"bin 10": join bytes (bin[20:21]),
"bin 11": join bytes (bin 231),
"bin 12": join bytes (bin 251),

([22
([24
"bin 13": join bytes (bin[26
"bin 14": join bytes (bin[28
"bin 15": join bytes (bin[30:31
"bin 16": join bytes (bin[32
"bin 17": join bytes (bin[34
"bin 18": join bytes (bin[36

148

HZS

"bin 19": join bytes (bin[38 1)
"bin 20": join bytes (bin[40 1)
"bin 21": join bytes (bin[42:43]),
"bin 22": join bytes (bin[44 1)
"bin 23": join bytes(bin[46 1)
"bin 1 MToF": MToF[0]/3,
"bin 3 MToF": MToF[1]/3,
"bin 5 MToF": MToF[2]/3,
"bin 7 MToF": MToF[3]/3,
}

print (" Bin number:\t", end='")
for 1 in range (0, 24):
print (to _return["bin " + str(i)], end=", ")
print("") # go to next line
print (" MToF:\t\t", end='")

for i in range (0, 4):

i=(1*2) +1
print (to_return["bin " + str(i) + " MToF"], end=", ")
print ("") # go to next line
if sampling time > (sampling period + 0.5): # we tolerate
a difference of 0.5 seconds
log = "Sampling period of the sensor was " \
+ str(round(sampling time - sampling period, 2))
+ " seconds longer than expected"

logger.warning(log)

elif sampling time < (sampling period - 0.5):
logger.warning ("Sampling period of the sensor was "
+ str(round(sampling period -
sampling time, 2)) + " seconds shorter than expected")

return to return

else:
1f the function with the checksum return an error (FALSE)
logger.warning (
"Error in the data received (wrong checksum), reading
histogram again... (" + str(attempts) + "/3)")
logger.warning ("Data received were:\n" + str(bin) +
str (MToF) + str(sampling time) +
str (sample flow rate) + str(temperature) +
str(relative humidity) + str(PM A) +
str (PM B) +
str(PM C) + str(reject count glitch) +
str(reject count 1longTOF) +
str(reject count ratio) +
str(reject count Out Of Range) +
str (fan rev count) +
str (laser status) + str(checksum))
print ("Waiting SPI Buffer reset", end='\r')
time.sleep(wait reset SPI buffer) # let some times between
two SPI communications
attempts += 1
else:
logger.critical ("Failed to read histogram (transmission
initiation problem)")
return to _return

if attempts >= 3:

149

OPCN3.py

logger.error ("Data were wrong 3 times (wrong checksum),
skipping this histogram reading")
logger.warning ("Data received were:\n" + str(bin) + str (MToF) +
str(sampling time) +
str(sample flow rate) + str(temperature) +
str(relative humidity) + str(PM_A) + str(PM B) +
str(PM C) + str(reject count glitch) +
str(reject count longTOF) +
str(reject count ratio) +
str(reject count Out Of Range) +
str(fan_rev_count) +
str (laser status) + str(checksum))
print ("Waiting SPI Buffer reset", end='\r')
time.sleep(wait reset SPI buffer)
return to return

def get data(flushing time, sampling time, start fan laser=True):
mrrn
Get all the possible data from the OPC-N3 sensor
Start the fan, flush air during defined time, start the laser,
sample the alir during defined time, turn off the laser and the fan
:param flushing time: time during which the ventilator 1is running
without sampling
to refresh the air inside the casing
:param sampling time: time during which the sensor 1s sampling
:return: Dictionary{"PM 1", "PM 2.5", "PM 10", "temperature", "relative
humidity", "bin'", "MToF", "sampling time",
"sample flow rate'", "reject count glitch", "reject count
longTOF", '"reject count ratio”,
"reject count out of range'", '"fan revolution count"”,
"laser status"}
return "error" everywhere in case of error during the measurement
(fan on/laser on/read histogram...)
seacanairy.py need to find the items in the dictionary, if not if
crash

to return = {
"PM 1": "error",
"PM 2.5": "error",
"PM 10": "error",
"temperature": "error",
"relative humidity": "error",
"sampling time": "error",
"sample flow rate": "error",
"reject count glitch": "error",
"reject count long TOF": "error",
"reject count ratio": "error",
"reject count out of range": "error",
"fan revolution count": "error",
"laser status": "error",
"bin 0": "error",
"bin 1": "error",
"bin 2": "error",
"bin 3": "error",
"bin 4": "error",
"bin 5": "error",
"bin 6": "error",
"bin 7": "error",
"bin 8": "error",
"bin 9": "error",
"bin 10": "error",

150

HZS

try:

"bin 11": "error",
"bin 12": "error",
"bin 13": "error",
"bin 14": "error",
"bin 15": "error",
"bin 16": "error",
"bin 17": "error",
"bin 18": "error",
"bin 19": "error",
"bin 20": "error",
"bin 21": "error",
"bin 22": "error",
"bin 23": "error",
"bin 1 MToF": "error",
"bin 3 MToF": "error",
"bin 5 MToF": "error",
"bin 7 MToF": "error"

necessary to put an except condition (see below)
if start fan laser:
if not fan on():
logger.critical ("Skipping histogram reading")
return to _return
print ("Flushing fresh air", end='\r"')
time.sleep (flushing time / 2)
if start fan laser:
if not laser on():
logger.critical ("Skipping histogram reading")
fan off ()
return to return
print ("Flushing fresh air", end='\r')
time.sleep (flushing time / 2)
to return = read histogram(sampling time)
laser off ()
fan off ()
spi.close()
return to_return

except (KeyboardInterrupt, SystemExit): # in case of error AND if user
stop the software during sampling

Avoid that the laser and the fan keep running indefinitely if

system crash

fan OFF..

print (" ") # go to the next line

logger.info ("Python instance has been stopped, shutting laser and
"

.M

laser off ()

fan off ()

raise

def join bytes(list of bytes):

o

Join bytes to an integer, from byte 0 to byte infinite (right to left)

:param list of bytes: list [bytes coming from the spi.readbytes or
spi.xfer functions]

:return: bytes concatenated to an integer

o

val
for

=0
1 in reversed(list of bytes):
val = val << 8 | 1

return val

151

OPCN3.py

def set fan speed(speed percent):
mrmrn
Set the sensor fan speed
Reduce fan speed can decrease dust deposition in the sensor casing
Argument 1in percent, calibrated from the slowest as possible to the
fastest

:param speed percent: number between 0 and 100 (0 = slowest, 100 =
fastest)
:return: nothing
if speed percent < 0 or speed percent > 100:
raise ValueError ("Fan speed of OPC-N3 sensor must be a number
between 0 and 100 (0 = slowest, 100 = fastest")
value = int ((45 + speed percent / 100 * 55) / 100 * 255)
Personal investigations shows that the fan don't work below 45%
Formula makes a calculation to convert 0% as 45% --> easier for user
input
if initiate transmission(0x42):
reading = spi.xfer ([0, valuel])
logger.info ("Fan speed is set on " + str(speed percent) + " (0 =
the slowest, 100 = the fastest)")
else:
logger.error ("Failed to set the fan speed")

def initialization SPI():
mrrn
Initialize the OPCN3 SPI system
To be executed once after Seacanalry power up
To be executed on time only after powering up the OPCN3
:return: nothing

mrrn

print ("Initializing OPCN3 SPI...", end='\r'")

Make any communication to start the Sensor SPI
Personal investigations shows that first communication is always lost
answer = []
if initiate transmission (0x3F) :
answer += spi.xfer ([0x3F])

for in range(63):
answer += spi.xfer ([0x3F])
if answer[-2:] == [0x42, 0x53]:
pass
string = "'

for x in range(len(answer)):
string += chr (answer[x])

print ("OPCN3 infostring: '" + str(string) + "'")

return

|l T .

if name == ' main
The code below runs if you execute this code from this file (you must
execute OPC-N3 and not seacanairy)
while True:
logger.debug ("Code is running from the OPC-N3 file itself, debug
messages shown'")
fan on()

read DAC power status('fan')

152

HZS

time.sleep (1)

laser on()

read DAC power status('laser')
time.sleep (1)

laser off ()

read DAC power status('laser')
time.sleep (1)

fan off ()

read DAC power status('fan')
print ("sleep")

time.sleep (3)

S R H R R R R R R R

get data(2, 3)
print ("sleep")
time.sleep (5)

153

Annexe 7

AFE.py

from datetime import datetime

import time

import os.path

import yaml

import logging

import sys

import threading

from progress.bar import IncrementalBar # to show beautiful loading bar on
the screen during sampling

from smbus2 import SMBus
from sys import exit

emplacement variable
bus = SMBus (1)

attributed canals and associated emplacements variable
address = 001110110

__

YAMIL SETTINGS

,,

Get current directory

current working directory = str(os.getcwd())

with open(current working directory + '/seacanairy settings.yaml') as file:
settings = yaml.safe load(file)

file.close()

store debug messages = settings['AFE Board']['Store debug messages
(important increase of logs) ']

project name = settings['Seacanairy settings']['Sampling session name']
T E——————

LOGGING SETTINGS

__

all the settings and other code for the logging

logging = tak a trace of some messages in a file to be reviewed afterward

(check for errors fe)

154

HZS

def set logger (message level, log file):
set up logging to file
logging.basicConfig(level=message level,
format='%(asctime)s % (name)-12s $(levelname)-8s
% (message)s',
datefmt="'%d-%m %H:%M',
filename=log file,
filemode='a"')

logger = logging.getLogger ('AFE Board') # name of the logger

all further logging must be called by logger.'level' and not
logging. 'level'

if not, the logging will be displayed as 'ROOT' and NOT 'OPC-N3'

return logger

if name == "' main ': # if you run this code directly (§ python3
C02.py)

message level = logging.DEBUG # show ALL the logging messages

Create a file to store the log if it doesn't exist

log file = current working directory + "/log/Alphasense board-
debugging.log"

if not os.path.isfile(log file):

os.mknod(log file)

print ("Alphasense Board DEBUG messages will be shown and stored in
str(log file) + "'")

logger = set logger (message level, log file)

define a Handler which writes INFO messages or higher to the
sys.stderr/display

console = logging.StreamHandler ()

console.setLevel (message level)

set a format which is simpler for console use

formatter = logging.Formatter ('$ (name)-12s: % (levelname) -8s
% (message)s')

tell the handler to use this format

console.setFormatter (formatter)

add the handler to the root logger

logging.getlLogger () .addHandler (console)

else: # if this file is considered as a library (if you execute
'seacanairy.py' for example)
it will only print and store INFO messages and above in the
corresponding log file
if store debug messages:
message level = logging.DEBUG
else:
message level = logging.INFO
log file = '/home/pi/seacanairy project/log/' + project name + '-
log.log' # complete location needed on the RPI
no need to add a handler, because there is already one in
seacanairy.py
logger = set logger (message level, log file)

all further logging must be called by logger.'level' and not
logging. 'level'
if not, the logging will be displayed as 'ROOT' and NOT 'GPS'

155

AFE.py

Channel Address - Single channel use

See LTC2497 data sheet, Table 3, Channel Selection.

All channels are uncommented - comment out the channels you do not plan
to use.

channel0 = 0xBO
channell = 0xBS8
channel2 = 0xBl
channel3 = 0xB9
channeld4 = 0xB2
channel5 = 0xBA
channel6 = 0xB3
channel7 = 0xBB
channel8 = 0xB4
channel9 = 0xBC
channell0 = 0xB5

channelll = 0xBD
channell2 = 0xB6
channell3 = 0xBE
channelld4 = 0xB7

channell5 = 0xBF

reference voltage of the ADC
vref = 5

To calculate the voltage, the number read in is 3 bytes. The first bit 1is
ignored.

Max reading is 2723 or 8,388,608

max_ reading = 8388608.0

lange = number of bytes to read. A minimum of 3 bytes are read in.

In this sample we read in 6 bytes, ignoring the last three bytes

zeit = tells how frequently you want the readings to be read from the
ADC.

Define the time to sleep between the readings.

tiempo = shows how frequently each channel is read in over the I2C bus.

Best to use timepo between each successive readings.

lange = 0x06 # number of bytes to read in the block
zeit = 15 # number of seconds to sleep between each measurement
sleep = 0.2 # number of seconds to sleep between each channel reading

has to be more than 0.2 (seconds)

Temperature

with open(current working directory +

'/AFE calibration/temperature calib.yaml') as file:
temp calib = yaml.safe load(file)
file.close()

NO2
with open (current working directory + '/AFE calibration/NO2 calib.yaml') as
file:

NO2 calib = yaml.safe load(file)

file.close()

S02
with open(current working directory + '/AFE calibration/S0O2 calib.yaml') as

156

HZS

file:
S02 calib = yaml.safe load(file)
file.close()

OX
with open (current working directory + '/AFE calibration/OX calib.yaml') as
file:

OX calib = yaml.safe load(file)

file.close()

CO
with open (current working directory + '/AFE calibration/CO calib.yaml') as
file:

CO calib = yaml.safe load(file)

file.close()

def getADCreading(adc_address, adc_channel):

mrmrn

Read tension from the ADC on a certain channel

:param adc_address: slave 12c address
:param adc _channel: channel where to read tension

:return: tension between channel and ground (volts)
mrmrn

attempts = 0
while attempts < 4:

try:

bus.write byte(adc_address, adc_channel)

print ("Reading tension...
", end:'\r')

time.sleep(sleep)

reading = bus.read i2c block data(adc_address, adc_channel,
lange)

o—mm——————— Start conversion for the Channel Data —--———----—-—--

valor = ((((reading[0] & Ox3F)) << 16)) + ((reading[l] << 8)) +
(((reading[2] & 0xEQ)))

add a debug function

debug (print ("Valor is 0x%x'" % valor))

o ——————— End of conversion of the Channel -—-—-—-—-——--—-
volts = round(valor * vref / max_ reading, 7)

Rounding to 7 decimals because ADC accuracy is 3.9 microvolt
print ("Reading tension...", volts, "V", end='\r'")

if (reading[0] & 0b11000000) == 0b11000000:

logger.error (
"Input voltage is either open or more than " +
str(vref) + "Volts.")
logger.warning ("The reading may not be correct. Value read
is " + str(volts) + " mV")

time.sleep(sleep) # be sure to have some time laps between
two I2C reading/writing # i2c don't care!
return volts

except:

if attempts >= 3:
logger.critical ("i2c transmission failed 3 consecutive

157

AFE.py

times (" + str(sys.exc_info())
+ "), skipping i2c reading")
return False # indicate clearly that system has failed

logger.error ("Error in the i2c transmission (" +
str(sys.exc_info())
+ "), trying again... (" + str(attempts) + "/3)")
attempts += 1 # increment of reading trials
time.sleep(l) # if transmission fails, wait a bit to try again

(sensor is maybe busy)

return False

reading multiplier = 1000 # multiplication of the value given by the rpi

def read temp():

mrrn

Measure tension of the temperature sensor
(Note that sensor 1is not located in the gas hood.)

:return: Dictionary containing tension in milli volts {'temperature

raw'}
mrrn

volts = getADCreading(address, channelb)
if volts is not False:
tempv = round(reading multiplier * volts, 5)
logger.debug ("Tension from temperature sensor (AFE board) is " +
str (tempv) + " mvV")
time.sleep (sleep)

temp to return = {
"temperature raw": tempv,
"temperature": "-"
}
else:
logger.critical ("Failed to read temperature")
temp to return = {
"temperature raw": "error",
"temperature": "error"

return temp to return

def read NO2():

mrmrn

Measure tension of NO2 main and auxiliary electrodes

:return: Dictionary containing tensions in milli volts {'NO2 main',
'NO2 aux'}

mrrn

volts = getADCreading(address, channel8)
if volts is not False:
NO2v_main = round(reading multiplier * volts, 5)

158

HZS

logger.debug ("Tension from NO2Z sensor (main) is " + str(NO2v_main)
+ " mv")
time.sleep (sleep)
NO2v_aux = round(reading multiplier * getADCreading (address,
channeld), 5)
logger.debug ("Tension from NO2Z sensor (aux) is " + str(NO2v_aux) +
" mv")
time.sleep (sleep)
NO2 to return = {
"NO2 main": NO2v_main,
"NO2 aux": NO2v_aux,
"NO2 ppb": "-"
}
else:

logger.critical ("Failed to read NO2 sensor")
NO2 to return = {

"NO2 main": "error",
"NO2 aux": "error",
"NO2 ppb": "error"

return NOZ2 to return

def read OX():

mrrn

Measure tension of OX main and auxiliary electrodes

:return: Dictionary containing tensions in milli volts {'OX main', '0OX
aux'}
volts = getADCreading(address, channel7)
if volts is not False:
Oxv_main = round(reading multiplier * volts, 5)
logger.debug ("Tension from Ox sensor (main) is " + str(Oxv_main) +
" mv")
time.sleep (sleep)
Oxv_aux = round(reading multiplier * getADCreading (address,
channel3), 5)
logger.debug ("Tension from Ox sensor (aux) is " + str(Oxv_aux) + "
mv")
time.sleep (sleep)

OX to return = {
"OX main": Oxv_main,
"OX aux": Oxv_aux,
" OX ppb " : nm_mn
}
else:

logger.critical ("Failed to read OX")
OX to return = {

"OX main": "error",
"OX aux": "error",
"OX ppb": "error"

return OX to return

def read S02():

159

AFE.py

mrrn

Measure tension of SO2 main and auxiliary electrodes

:return: Dictionary containing tensions in milli volts {'S02 main',
'S02 aux'}
mrrn
volts = getADCreading(address, channel6)
if volts is not False:
S02v_main = round(reading multiplier * volts, 5)
logger.debug ("Tension from SO2 sensor (main) is " + str(SO2v_main)
+ " mv")
time.sleep (sleep)
S02v_aux = round(reading multiplier * getADCreading(address,
channel2), 5)

logger.debug ("Tension from SO2 sensor (aux) is " + str(S02v_aux) +
" mv")
time.sleep (sleep)
S02_to_ return = {
"S02 main": SO2v_main,
"S02 aux": S02v_aux,
"SO2 ppb" : m_mn
}
else:

logger.critical ("Failed to read SO02")

SO2 _to_return = {

"SO02 main": "error",
"SO02 aux": "error",
"SO2 ppb": "error"

}

return SO2_ to return

def read CO():

mrmrn

Measure tension of CO main and auxiliary electrodes

creturn: Dictionary containing tensions in milli volts {'CO main', 'CO
aux'}

volts = getADCreading (address, channelO)

if volts is not False:

COv_main = round(reading multiplier * volts, 5)
time.sleep (sleep)
logger.debug ("Tension from CO sensor (main) is " + str(COv_main) +

" mv")

COv_aux = round(reading multiplier * getADCreading (address,
channell), 5)

logger.debug ("Tension from CO sensor (aux) is " + str(COv_aux) + "
mv")

time.sleep(sleep)

CO2 to return = {

"CO main": COv_main,
"CO aux": COv aux,
"co ppb" . H_H_

}
else:
logger.critical ("Failed to read CO")

160

HZS

def

CO2 _to return = {

"CO main": "error",
"CO aux": "error",
"CO ppb": "error"

}

return CO2 to return

calibrate temperature (main) :

mrrn

Apply calibration to the temperature measurement

:param main: electric tension from the temperature sensor

:return: temperature in °C
mmrn

temperature = ((main - temp calib["Vkal"]) / temp calib["Thermal

sensitivity"]) \

def

NO2

def

+ temp calib["Tkal"]
temperature = round(temperature, 2)

return temperature

calibrate NO2 (main, aux):

mmrn -

Apply calibration to the NOZ measurements

:param main: electrical tension from the main electrode
:param aux: electrical tension from the auxiliary electrode
:return: NOZ2 concentration (ppb)

Algorithm 1

NO2 ppb = (

(main - NO2 calib["WEO e"]) -
(
NO2 calib["nt"] * (aux -
calib["AEO e"])
)
)
/ NO2 calib["WE SENS"]
) + NO2 calib["C"]

NO2 ppb = round(NO2 ppb, 1)

return NO2Z2 ppb

calibrate OX(main, aux, NO2 ppb) :

Apply calibration to the 0OX measurements

:param main: electrical tension from the main electrode
:param aux: electrical tension from the auxiliary electrode
:param NOZ ppb: NOZ concentration from the other sensor
:return: OX concentration (ppb)

Algorithm 3

O3_ppb = (

(main - OX calib["WEO e"] - (NOZ ppb *

161

AFE.py

OX calib["WE SENS NO2"])
) —
(OX calib["WEO s"] - OX calib["AEO s"]) -
(
OX calib["nt"] *
(aux - OX calib["AEO e"])
)
) / OX calib["WE SENS"]
)\
+ OX calib["C"]

03 ppb = round (03 ppb, 1)

return 03 ppb

def calibrate SO2 (main, aux):
mrmn
Apply calibration to the S02 measurements
:param main: electrical tension from the main electrode
:param aux: electrical tension from the auxiliary electrode
:return: SO2 concentration (ppb)
mrmn
Algorithm 4
S02 ppb = -1 * \
(
(
(main - S02 calib["WEO e"]) -
S02 calib["WEO s"] - S02 calib["nt"]
)
/ S02 calib["WE SENS"]) \
+ 502 calib["C"]

S02 ppb = round(SO2 ppb, 1)

return SO2 ppb

def calibrate CO(main, aux):
mrrn
Apply calibration to the CO measurements
:param main: electrical tension from the main electrode
:param aux: electrical tension from the auxiliary electrode
:return: CO concentration (ppb)
mrmrn
Algorithm 1
CO_ppb = (

(main - CO_calib["WEO e"]) -
(
CO calib["nt"] *
(aux - CO calib["AEO e"])
)
)

/ CO_calib["WE SENS"]) \
+ CO_calib(["C"]
CO _ppb = round(CO ppb, 1)

return CO_ppb

162

HZS

def calibrate all (data):
mrmrn -
Apply calibration to all available items
:param data: dictionary containing values to calibrate
:return: dictionnary with calibrated items

mrmrn

if "temperature raw" in data:

data["temperature"] = calibrate temperature (data["temperature
raw"])

if "NO2 main" in data:

data["NO2 ppb"] = calibrate NO2(data["NO2 main"], data["NO2 aux"])
if "OX main" in data:
data["OX ppb"] = calibrate OX(data["OX main"], data["OX aux"],

data["NO2 ppb"])

if "SO02 main" in data:
data["SO2 ppb"] = calibrate SO02(data["S0O2 main"], data["sSO2 aux"])

if "CO main" in data:
data["CO ppb"] = calibrate CO(data["CO main"], datal["CO aux"])

return data

def get data():

mnn "_

Get all available data from the 4-AFE Alphasense Board (one signe
instantaneous reading)

:return: dictionary{'NO2 ppb', NOZ2 main', 'NOZ2 aux', 'OX ppb', 'OX
main', 'OX aux',
'SO02 ppb', 'SO2 main', 'SO2 aux', 'CO ppb', 'CO main', 'CO
aux',
'"temperature', 'temperature raw'}

mrrn

data = {}

data.update
data.update
data.update (read SO2 (
data.update (read CO()
data.update (read temp())

data = calibrate all (data)

read NO2())
read 0X())
))
)

—~ e~~~

return data

def print measurements (data) :

Print all measurement data on the screen

:param data: dictionary containing all the data

:return: nothing

print ("\t\t ppb \t\t(main (mV), aux (mVvV))")

print ("NO2:\t\t", data["NO2 ppb"], "\t\t(", data["NO2 main"], ", "
data["NO2 aux"], ")™)

print ("OX:\t\t", data["OX ppb"], "\t\t(", data["OX main"], ", ",
data["OX aux"], "))

print ("SO2:\t\t", data["SO2 ppb"], "\t\t(", data["SO2 main"], ", "

163

AFE.py

data["S02 aux"1, ")")

print ("CO:\t\t", datal["CO ppb"]l, "\t\t(", data["CO main"], ", ",
data["CO aux"], ")™)

print ("Temperature:\t", data["temperature"], "\t\t(", data["temperature
raw"], ")")

return

def start averaged data (number of measurements, delay = 0, display=True):
mrmrn
Perform multiple readings and makes an average
Run get averaged data () once thread is finished to get the data
Improved for threading application (no display prints)

:param number of measurements: number of measurement to average, each
single measurement taking around 2 seconds
:return: Dictionary{'NO2 main', 'NOZ aux', 'OX main', 'OX aux',
'SO2 main', 'S02 aux', 'CO main', 'CO aux',
"temperature raw'}

mrmn

global thread data

thread data = {}
if delay:
time.sleep (delay)

if display:
bar = IncrementalBar ("Reading tensions", max=(5 *
number of measurements))

logger.debug ("Starting averaged data reading")
NO2 main = []
NO2 aux []

OX main []
OX aux = []

S02 main = []
S02 aux = []

CO _main
CO_aux = []

Il
—
-

temperature main = []

for in range (number of measurements) :
NO2 = read NO2 ()
if display: bar.next ()
NO2 main += [NO2['NO2 main']]
NOZ2 aux += [NOZ2['NO2 aux']]

)

thread data.update }
b

thread data.update
thread data.update
thread data.update

{"NO2 main min": min (NO2 main
{"NO2 main max": max (NO2 main
{"NO2 aux min": min(NO2_ aux)}
{"NO2 aux max": max (NO2 aux)}

— o~ o~ —~

)
)
)
)

sum = 0

for i in range(len(NO2 main)) :
sum += NO2 main[i]

NO2 main = sum / len(NO2 main)

164

HZS

sum = 0

for i in range(len(NO2 aux)):
sum += NO2 aux[i]

NO2 aux = sum / len(NO2 aux)

for in range (number of measurements) :
OX = read OX()
if display: bar.next ()
OX main += [OX['OX main']]
OX aux += [OX['OX aux']]

thread data.update ({"OX main min": min (OX main)
thread data.update ({"OX main max": max (OX main)

})
})
thread data.update ({"OX aux min": min (OX aux)})
thread data.update ({"OX aux max": max (0X_ aux)})

sum = 0

for i in range(len(OX main)):
sum += OX main([i]

OX main = sum / len(OX main)

sum = 0

for i in range(len(OX aux)):
sum += OX aux[i]

OX aux = sum / len(0X aux)

for in range (number of measurements) :
S02 = read SO02()
if display: bar.next ()
S02 main += [S02['S02 main']]
S02 aux += [S02['S02 aux']]

thread data.update ({"S02 main min": min(SO2 main)
thread data.update ({"S02 main max": max(SO2 main)
thread data.update ({"SO2 aux min": min (SO2 aux)})
thread data.update ({"SO02 aux max": max(SO2_ aux)})

sum = 0

for i in range(len(SO2 main)) :
sum += SO2 main[i]

S02 main = sum / len(SO2 main)

sum = 0

for i in range(len(S02 aux)):
sum += SO2 aux[i]

S02 aux = sum / len(SO2_ aux)

for in range (number of measurements) :
CO = read CO()
if display: bar.next ()
CO main += [CO['CO main']]
CO _aux += [CO['CO aux']]

thread data.update ({"CO main min": min(CO_main)})
thread data.update ({"CO main max": max(CO main)})
thread data.update ({"CO aux min": min (CO_aux) })
thread data.update ({"CO aux max": max (CO_aux)})

sum = 0
for 1 in range(len(CO main)):
sum += CO main[i]

})
})

165

AFE.py

CO_main = sum / len(CO_main)

sum = 0

for i in range(len(CO_aux)):
sum += CO aux[i]

CO_aux = sum / len(CO_aux)

for in range(number of measurements):
temp = read temp ()
if display: bar.next /()

temperature main += [temp['temperature raw']]
thread data.update ({"temperature min": min (temperature main)})
thread data.update ({"temperature max": max (temperature main)})
sum = 0

for i in range(len(temperature main)):
sum += temperature main[i]
temperature = sum / len (temperature main)

thread data.update ({
'NO2 main': NO2 main,
'NOZ2 aux': NO2_ aux,
'OX main': OX main,
'OX aux': OX aux,
'S02 main': SO2 main,
'S02 aux': S02_ aux,
'CO main': CO main,
'CO aux': CO_aux,
'temperature raw': temperature

P
thread data = calibrate all (thread data)

logger.debug ("Execute function 'get averaged data' to show data on
screen")

bar.finish ()

return thread data

def start background average measurement (number of measurements, delay=0):
mrmrn
Start a new thread to perform averaged reading in the background
Run get averaged data () once thread is finished to get the data

thread = threading.Thread(target=AFE.start averaged data,
args=([number of measurements, delay]), daemon=True)
in your own code 1s preferred

:param number of measurements: number of measurement to average, each
single measurement taking around 2 seconds

:param delay: amount of time in between the start of the thread and the
start of the sampling operation

:return: nothing

mrmrn

print ("Starting background AFE average reading...")
x = threading.Thread(target=start averaged data,
args=([number of measurements, delay]), daemon=True)

166

HZS

x.start ()
logger.debug ("Execute function 'get averaged data' to show data on

screen")
return

def get averaged data():

mrrn
Read the data of the last start averaged data() (or
start background average measurement ()) performed

:return: dictionary{'NO2 ppb', NO2 main', 'NO2 aux', 'OX ppb', 'OX
main', 'OX aux',
'SO02 ppb', 'SO2 main', 'S02 aux', 'CO ppb', 'CO main', 'CO

aux',
"temperature', 'temperature raw'}

mmrn

global thread data
print measurements (thread data)
return thread data

open the file where the data will be stored

if name == " main ":
Execute an execution test if the script is executed from there

while True:
get data ()

167

Annexe 8

GPS.py

mrrn

Library for the use of the U-BLOX-7 GNSS module (Velleman VMA430)
Get the data from the UART port

Convert the NMEA protocol and extract the useful information
Should work with other UART GNSS devices

mrrn

from datetime import datetime, timezone

import serial # UART libraries, to install this library: pip3 install
pyserial

import time

import yaml

import logging

import RPi.GPIO as GPIO

import sys

import os.path

Get current directory
current working directory = str(os.getcwd())

with open(current working directory + '/seacanairy settings.yaml') as file:
settings = yaml.safe load(file)
file.close()

store debug messages = settings['GPS']['Store debug messages (important
increase of logs) ']

project name = settings['Seacanairy settings']['Sampling session name']
T E——————

LOGGING SETTINGS
T E——————

all the settings and other code for the logging

logging = tak a trace of some messages in a file to be reviewed afterward

(check for errors fe)

def set logger (message level, log file):
set up logging to file
logging.basicConfig (level=message level,
format='% (asctime)s % (name)-12s % (levelname) -8s
% (message)s',

168

HZS

datefmt="'%d-%m %H:%M',
filename=log file,
filemode='a"')

logger = logging.getLogger ('GPS') # name of the logger

all further logging must be called by logger.'level' and not
logging. 'level'

1f not, the logging will be displayed as 'ROOT' and NOT 'OPC-N3'

return logger

if name == "' main ': # if you run this code directly ($ python3
C02.py)

message level = logging.DEBUG # show ALL the logging messages

Create a file to store the log if it doesn't exist

log file = current working directory + "/log/GPS-debugging.log"

if not os.path.isfile(log file):

os.mknod(log file)

print ("GPS DEBUG messages will be shown and stored in '" +
str(log file) + "'")

logger = set logger (message level, log file)

define a Handler which writes INFO messages or higher to the
sys.stderr/display

console = logging.StreamHandler ()

console.setLevel (message level)

set a format which is simpler for console use

formatter = logging.Formatter ('% (name)-12s: % (levelname)-8s
% (message)s')

tell the handler to use this format

console.setFormatter (formatter)

add the handler to the root logger

logging.getLogger () .addHandler (console)

else: # if this file is considered as a library (if you execute
'seacanairy.py' for example)
it will only print and store INFO messages and above in the
corresponding log file
if store debug messages:
message level = logging.DEBUG
else:
message level = logging.INFO
log file = '/home/pi/seacanairy project/log/' + project name + '-
log.log' # complete location needed on the RPI
no need to add a handler, because there is already one 1in
seacanairy.py
logger = set logger (message level, log file)

all further logging must be called by logger.'level' and not
logging. 'level'
if not, the logging will be displayed as 'ROOT' and NOT 'GPS'

spi.readall () make this sep unnecessary
GPIO.setmode (GPIO.BCM)
GPIO.setup (25, GPIO.OUT, initial=GPIO.LOW, pull up down=GPIO.PUD DOWN)

#
#
#
Used during developing to synchronize the UART reading with the GPS pulse
#
#
#
GPIO.output (25, GPIO.LOW)

169

GPS.py

def pulse():

GPIO.output (25, GPIO.HIGH)
time.sleep(.2)

GPIO.output (25, GPIO.LOW)

def get raw reading(close UART=True) :
mrmrn
Get raw GPS reading via UART
Read all the lines available on the UART port

:return: raw data from the GPS
mrrn

global ser
port = '/dev/ttyAMAO'
try:
USB = '/dev/ttyACMO'
PLO11 = '/dev/serialO' == '/dev/ttyAMAQ'
logger.debug ("Port used for UART communication is: " + str(port))
ser = serial.Serial (port=port, baudrate=9600)
print ("Starting UART communication...", end='\r'")

time.sleep (1)
ser.flush ()

try:
print ("Synchronizing... ", end="'\r")
ser.read all() # delete all corrupted data
ser.flush() # flush the buffer
time.sleep (1)
reading = ser.read all()
if close UART:
ser.close() # avoid unnecessary port closing if second
reading 1is requested
except:
logger.critical ("Failed to read GPS data on UART port " +
str(port) + " (" + str(sys.exc info()) + ")")
ser.close ()
return False # indicate error
except:
logger.critical ("Failed to initiate UART port " + str(port) + " ("
+ str(sys.exc_info()) + ")")

return False # indicate error

reading = str(reading, 'utf-8', errors='replace') # convert the text
sent in b'...' format into readable format...

it will also skip the line where the GPS propose it (see NMEA
protocol)

'replace' = replace the unencodable unicode to a question mark

logger.debug ("Raw reading is:\r" + str(reading[:-11]))

return reading

def lat long decode(raw position, compas):
Decode longitude and latitude data from NMEA into readable format
:param raw _position: raw longitude/latitude word
:param compas: compas (N/S/W/E)
:return: string(decoded latitude/longitude)
position = raw position.split(".")
min = position[0][-2:]
min dec = position([1]
deg = position[0][0:-2]

170

HZS

o

position = deg + '
return position

'+ min + "." + min dec + "' " + compas

def decode NMEA (data) :

mrmrn

Decode the NMEA script and get the useful data

Only the necessary data are extracted from the frames

:param data: whole string returned by the GPS (all the lines of the
NMEA)

:return: Dictionary{fix time, fix date, fix date and time, latitude,
longitude, SOG, COG, status,

horizontal precision, altitude, WGS84 correction, current

time, accuracy}
mrrn

data = data.split("\r\n") # create a list of lines (\r\n is sent by
the sensor at the end of each line)
to return = {}
visible satellites = 0
for i in range(len(data)): # don't know at which line data will be
send, so it will search for the good line
print ("Decode data...", end='\r')

print (datal[i], end='\r")
time.sleep(.1) # let a bit of time for the user to see the data
returned by the GPS
print ("
n, end:’\r')
if data[i][0:6] == "$GPRMC":
if check(data[i]) :
GPRMC = datal[i].split(",")
fix time = GPRMC[1][0:2] + ":" 4+ GPRMC[1]([2:4] + ":" +
GPRMC[1][4:6]
date = GPRMC[9][0:2] + "-" 4+ GPRMC[9][2:4] + "-" +
GPRMC[9][4:6]
to return.update ({

"current date and time": date + " " + fix time + "
uTc",
"current date": date,
"current time": fix time,
})
if GPRMC[2] == "V": # indicate that GPS is not working
good

logger.warning ("GPS does not receive signal®)
to return.update ({

"status": "NOK",

"latitude": "no fix",
"longitude": "no fix",

"SOG": "no fix",

"COG": "no fix",

"altitude": "no fix",

"WGS84 correction": "no fix",
"fix status": "no fix",
"horizontal precision": "no fix",
"accuracy": "no fix"

})
return to_ return

elif GPRMC[2] == "A": # indicate that GPS is working fine
latitude = lat long decode (GPRMC[3], GPRMC[4])
longitude = lat long decode (GPRMC[5], GPRMC[6])
SOG = GPRMC|[7] .replace(',", '.")
COG GPRMC [8]

171

GPS.py

GPS

to_return.update ({
"latitude": latitude,
"longitude": longitude,
"SOG": SOG,
"CoG": COG,
"status": "OK"

})

else:
logger.critical ("Something wrong with the GPRMC data,
satus returned is: " + str (GPRMCI[2]))

elif data[i1][0:6] == "SGPGGA":
if check(datal[i]) :
GPGGA = dataf[i].split(",")
current time = GPGGA[1][0:2] + ":" + GPGGA[1][2:4] + ":" +

GPGGA[1][4:6] + " UTC"

altitude = GPGGA[9] + " m"

WGS84 correction = GPGGA[11l] + " " + GPGGA[12]

position fix status_ indicator = GPGGA[6]

horizontal precision = float (GPGGA[8])

accuracy = "'

if horizontal precision < 2:
accuracy = "very good"

elif 2 <= horizontal precision < 3:
accuracy = "good"

elif 3 <= horizontal precision < 5:
accuracy = "average"

elif 5 <= horizontal precision < 6:
accuracy = "poor"

elif horizontal precision >= 6:
accuracy = "very poor"

if position fix status indicator == '0':
fix status = "No fix/invalid"

elif position fix status indicator == '1':
fix status = "Standard GPS 2D/3D"

elif position fix status indicator == '2':
fix status = "DGPS"

elif position fix status indicator == '6':
fix status = "DR"

else:
logger.error(

"Unknown position fix status indicator in GPGGA: "

+ str(position fix status indicator))

fix status = "Unknown: " +

str(position fix status indicator)

172

to return.update ({
"altitude": altitude,
"WGS84 correction": WGS84 correction,
"fix status": fix status,
"current time": current time,
"horizontal precision": horizontal precision,
"accuracy": accuracy

})

elif data[i][0:6] == "SGPGSV":
visible satellites += 1

to_return.update ({
"available satellites": visible satellites

b

HZS

return to return

def digest(string line):
mrmrn
Calculate the checksum based on the transmitted data
Put the whole NMEA line in the argument, function will automatically
remove the checksum at the end
COPY-PASTED AND ADAPTED FROM WIKIPEDIA
:param NMEAstring: line of data transmitted by the GPS
rreturn:
mrmrn
calc cksum = 0
NMEAstring = string line[1l:-3]
for s in NMEAstring:
it is XOR of each Unicode integer representation
calc _cksum "= ord(s)

calc _cksum

calc_cksum
(abc to ABC)

1f not, Python does not recognize this string as an hexadecimal

return calc cksum

str (hex(calc cksum)) [2:] # get hex representation
calc_cksum.upper() # convert the lowercase to uppercase

def check (NMEA line):

mrrn

Check that the data transmitted are correct

Put the whole line in the argument, function extract the checksum at
the end on its own

:param NMEA line: one line of data transmitted by the GPS

creturn: True (data are corrects), False (data are not corrects)

mrmrn

calc = digest (NMEA line)

checksum = NMEA line[-2:] # extract the checksum, the two last
characters
if calc == checksum:

logger.debug ("Checksum is correct")
return True

else:
logger.warning ("Checksum is not correct: calculation is " +
str(calc) + " | sensor's checksum is " + str(checksum))
logger.warning ("NMEA line was: " + str (NMEA line))

return False

def get position():

mrmrn

Read position data from the GPS receiver

rreturn: Dictionary{fix time, fix date, fix date and time, latitude,
longitude, SOG, COG, status,
horizontal precision, altitude, WGS84 correction, current
time, accuracy, fix status}

logger.debug ("Get position")

global ser
attempts = 1

to return = {

173

GPS.py

"current date and time": "",

"current date": "",

"current time": "",

"latitude": "error",

"longitude": "error",

"SOG": "error",

"COG": "error",

"status": "error",

"horizontal precision": "error",

"altitude": "error",

"WGS84 correction": "error",

"fix status": "error",

"accuracy": "error",

"available satellites": O

} # you must return all those items to avoid bugs in seacanairy.py (f-

e looking for an item which doesn't exist)

while attempts <= 4:
reading = get raw reading(close UART=False)
if not reading: # 1f it failed to read UART, it returns False
logger.critical ("Unable to read GPS sensor, skipping reading")
ser.close() # 1if no more reading necessary, close UART port
return to_return # return a dictionary full of "error"
else:
try: # avoid errors because of 'I don't know why the sensor
sometimes delete items in the NMEA at random'
data = decode NMEA (reading) # decode the raw reading
to_return.update(data) # update the dictionary with the
data the function got
logger.debug ("'to return' is:\r" + str(to_return))
At each trial, it will update the dictionary

except:
logger.error ("There were an error while decoding NMEA
protocol (" + str(str(sys.exc info())) + ")")
if "error" in to_return.values(): # if the dictionary contains

an error, try again
attempts += 1
if attempts >= 4: # if the system has tried 3 times to
read the data but that there are still errors
logger.error ("Tried 3 times to get full GPS data, still
a value 'error'")

ser.close () # 1f no more reading necessary, close UART
port
break # exit the loop and print the data anyway
logger.warning ("Data missing in GPS transmission, reading
again (" + str(attempts) + "/3)")
time.sleep(.2)
else: # 1if there are no errors, then exit the loop and proceed
ser.close () # if no more reading necessary, close UART
port
break
print ("Current date and time:\t", to_return["current date and time"])
print ("Latitude:\t", to return["latitude"], "\t|\tLongitude:\t",
to return["longitude"])
print ("Altitude:\t", to return["altitude"], "\t\t|\tWGS84 correction:",
to return["WGS84 correction"])
print ("SOG:\t\t", to return["SOG"], "kts", "\t\t[\tCOG:\t\t ", end='")

if to_return["COG"] == '':
print ("no speed")
else:

174

HZS

print (to_return["COG"])
print ("Horizontal deviation:\t", to return["horizontal precision"])
print ("GPS mode:\t", to return["fix status"])
print ("Accuracy:\t", to return["accuracy"], "\t\t|\tGPS status:\t",
[
(

to return["status"])
print ("Available satellites:\t", to_return(["available satellites"])

return to return

if name == ' main
print ("GPS.py is running alone")
while True:
get position()
time.sleep (5)

175

Annexe 9
flow.py

get the time
import time
from datetime import date, datetime

Get the errors
import sys

Create folders and files
import os

smbus2 is the new smbus, allow more than 32 bits writing/reading

from smbus2 import SMBus, i2c msg

'SMBus' is the general driver for i2c communication

'i2c msg' allow to make i2c write followed by iZ2c read WITHOUT any STOP
byte (see sensor documentation)

logging
import logging

yaml settings
import yaml

progress bar during sampling
from progress.bar import IncrementalBar

take measurement while doing something else
import threading

I?C address of the CO2 device
air address = 1
02 address = 2
CO2 address = 3
N20 address 4
Ar address = 5

emplacement variable
bus = SMBus (1) # make it easier to read/write to the sensor (bus.read or
bus.write...)

Get current directory
current working directory = str(os.getcwd())

with open(current working directory + '/seacanairy settings.yaml') as file:

176

HZS

settings = yaml.safe load(file)
file.close() # close the file after use
store debug messages = settings['Air flow sensor']['Store debug messages

(important increase of logs) ']

project name = settings['Seacanairy settings']['Sampling session name']
__

LOGGING SETTINGS

__

all the settings and other code for the logging
logging = tak a trace of some messages in a file to be reviewed afterward
(check for errors fe)

def set logger (message level, log file):
set up logging to file
logging.basicConfig(level=message level,
format='% (asctime)s % (name)-12s % (levelname)-8s
% (message)s',
datefmt='%d-%m %SH:%M',
filename=log file,
filemode='a"')

logger = logging.getlLogger ('Flow meter') # name of the logger

all further logging must be called by logger.'level' and not
logging. 'level'

if not, the logging will be displayed as 'ROOT' and NOT 'OPC-N3'

return logger

if name == "' main_ ': # if you run this code directly (§ python3
C02.py)

message level = logging.DEBUG # show ALL the logging messages

Create a file to store the log if it doesn't exist

log file = current working directory + "/log/flow meter-debugging.log"

if not os.path.isfile(log file):

os.mknod(log file)

print ("Flow meter DEBRUG messages will be shown and stored in '" +
str(log file) + "'")

logger = set logger (message level, log file)

The following HANDLER must be activated ONLY if you run this code
alone

Without the 'if name == ' main ' condition, all the logging
messages are displayed 3 TIMES

(once for the handler in COZ2.py, once for the handler in OPCN3.py,
and once for the handler in seacanairy.py)

define a Handler which writes INFO messages or higher to the
sys.stderr/display (= the console)

console = logging.StreamHandler ()

console.setLevel (message level)

set a format which is simpler for console use

formatter = logging.Formatter ('S (name)-12s: % (levelname)-8s
% (message)s')

tell the handler to use this format

console.setFormatter (formatter)

add the handler to the root logger

logging.getlLogger () .addHandler (console)

177

flow.py

else: # 1if this file is considered as a library (if you execute
seacanairy.py for example)
if the user asked to store all the messages in
'seacanairy settings.yaml'
if store debug messages:
message_ level = logging.DEBUG
if the user don't want to store everything
else:
message level = logging.INFO
Create a file to store the log if it doesn't exist yet

log file = current working directory + "/" + project name + "/" +
project name + "-log.log"
logger = set logger (message level, log file)

no need to add a handler, because there is already one in
seacanaliry.py

all further logging must be called by logger.'level' and not
logging. 'level'
if not, the logging will be displayed as ROOT and NOT 'CO2 sensor'

def loading bar (name, delay):
mrmn
Show a loading bar on the screen during a a certain amount of time
Make the user understand the software 1is doing/waiting for something
:param name: Text to be shown on the left of the loading bar
:param length: Amount of time the system is waiting in seconds
:return: nothing
mrmn
bar = IncrementalBar (name, max=(2 * delay), suffix='%$(elapsed)s/' +
str(delay) + ' seconds')
for i in range (2 * delay):
time.sleep(0.5)
bar.next ()
bar.finish ()
return

def digest (buf) :

mrmn

Calculate the CRC8 checksum (based on the CO2 documentation example)

:param buf: List[bytes to digest]

:return: checksum

Translation of the C++ code given in the documentation

crcVal = 0x00

_from = 0 # the first item in a list is named 0

_to = len(buf) # 1f there are two items in the list, then len() return
1 --> range (0, 1) = 2 loops

for i in range(from, to):
curVal = buf[i]

for j in range(0, 8): # C++ stops when J is not < 8 —--> same for
python in range
if ((crcval ~ curVal) & 0x80) != 0O:
crcVal = (crcval << 1) » 0x31
else:

178

HZS

crcVal = (crcval << 1)

curVal = (curVal << 1) # this line is in the "for j'" loop, not
in the "for i" loop

checksum = crcvVal & Oxff # keep only the 8 last bits

return checksum

def check(checksum, data):

mrrn
Check that the data transmitted are correct using the data and the
given checksum
:param checksum: Checksum given by the sensor (see sensor doc)
:param data: List[bytes to be used in the checksum calculation (see
sensor doc)]
:return: True 1f the data are correct, False 1f not
mrrn
calculation = digest (data)
if calculation == checksum:
logger.debug ("CRC8 is correct, data are valid")
return True

else:
logger.debug ("CRC8 does not fit, data are wrong")
logger.error ("Checksum is wrong, sensor checksum is: " +
str (checksum) +
", seacanairy checksum is: " + str(calculation) +
", data returned by the sensor is:" + str(data))
if data[0] and data[l] == O:

logger.debug ("Sensor returned 0 values, it is not ready,
waiting a bit")
print ("Sensor not ready, waiting...", end='\r')
time.sleep (3)
return False

def check (checksum, data):
mrmrn
Check that the data transmitted are correct using the data and the
given checksum
:param checksum: Checksum given by the sensor (see sensor doc)
:param data: List[bytes to be used in the checksum calculation (see
sensor doc)]
:return: True 1f the data are correct, False 1f not
calculation = digest (data)
if calculation == checksum:
logger.debug ("CRC8 is correct, data are valid")
return True

else:
logger.debug ("CRC8 does not fit, data are wrong")
logger.error ("Checksum is wrong, sensor checksum is: " +
str (checksum) +
", seacanairy checksum is: " + str(calculation) +
", data returned by the sensor is:"™ + str(data))
if data[0] and data[l] == O:

logger.debug ("Sensor returned 0 values, it is not ready,
waiting a bit")
print ("Sensor not ready, waiting...", end='\r')
time.sleep (3)
return False

179

flow.py

def get data(print data=True):
Get flow measurement from the Sensirion mass flow meter 4100
:return: dictionary {"flow [sccm]", "flow [slm]", "flow [slh]}
mrrn
logger.debug ("Reading flow from Sensirion Mass Flow Meter Sensor")
if print data:

print ("Reading flow...", end='\r')
to return = {

"flow [sccm]": "error",

"flow [slm]" "error",

"flow [slh]" "error"

attempts = 1

while attempts <= 4:
if attempts >= 3:
logger.critical ("i2c transmission failed 3 consecutive times,
skipping this flow reading")
return to return

try:
answer = bus.read i2c block data(air address, OxF1, 3)
logger.debug ("i2c succeeded, answer is: " + str(answer))
if check(answer[2], answer[0:2]):

break

except:
attempts += 1
logger.error ("i2c communication failed while reading flow (" +

str(sys.exc_info()) + ")")
if answer[0] == 255:

flow sccm = 0
flow slm = 0
flow slh 0
else:
flow _sccm = (answer[0] << 8) + answer[1]
flow slm = flow _sccm / 1000
flow slh round (flow slm * 60, 2)

if print data:
print (" ", end="\r")
print (flow sccm, "\tsccm [~= mL/min]")
print (flow slm, "\tslm [~= L/min]")
print (flow _slh, "\tslh [~= L/h]")

to return.update ({

"flow [sccm]": flow sccm,
"flow [slm]": flow slm,
"flow [slh]": flow slh

})

return to return
def start averaged measurement (sampling period,
number of measurement during sampling period, delay=0):

global sccm
global slm

180

HZS

global slh
sccm = []
slm = []
slh = []

time.sleep(delay)
sleep = sampling period / number of measurement during sampling period
for _ in range (number of measurement during sampling period) :

reading = get data(print data=False)

sccm. append (reading['flow [sccm] '])

slm.append(reading['flow [slm]'])

slh.append(reading['flow [slh]'])

time.sleep(sleep)

def get averaged measurement () :

to return = {
"average flow [sccm]": "error",
"average flow [slm]": "error",
"average flow [slh]": "error",

}

global sccm
global slm
to_return.update({"slm min": min(slm), "slm max": max(slm)})
global slh
try:

sum = 0

for i in range(len(sccm)) :

sum += sccm[i]
sccm = round (sum/len(sccm), 0)

sum = 0

for i in range(len(slm)):
sum += slm[i]

slm = round(sum/len(slm), 3)

sum = 0
for i in range(len(slh)):
sum += slh[i]

slh = round(sum/len(slh), 2)
except:
logger.error ("Error occurred while computing average flow rate (" +
str(sys.exc_info()) + ")")

return to return

print ("Average flow rate:")

print (sccm, "\tsccm [~= mL/min]")

print (slm, "\tslm [~= L/min] (min:", to return["slm min"], "max:",
to return["slm max"], ")")

print (slh, "\tslh [~= L/h]")

to return.update ({

"average flow [sccm]": sccm,
"average flow [slm]": slm,
"average flow [slh]": slh,

})

return to return

181

flow.py

if name == " main_ ":
while True:
get datal()
time.sleep (1)

182

Annexe 10
database.py

import yaml

import logging

import sys

import mysqgl.connector
import os

Get current directory
current working directory = str(os.getcwd())

with open(current working directory + '/seacanairy settings.yaml') as file:
settings = yaml.safe load(file)
file.close()

store debug messages = settings['MySQL database settings']['Store debug
messages (important increase of logs) ']

project name = settings['Seacanairy settings']['Sampling session name']

host = settings['MySQL database settings']['Host']

user settings['MySQL database settings']['User']

password = settings['MySQL database settings']['Password']

db name = settings['MySQL database settings']['Database name']
table name = project name

__

LOGGING SETTINGS

__

all the settings and other code for the logging

logging = tak a trace of some messages in a file to be reviewed afterward

(check for errors fe)

def set logger (message level, log file):
set up logging to file
logging.basicConfig(level=message level,
format='% (asctime)s % (name)-12s % (levelname)-8s
% (message)s',
datefmt='%d-%m %SH:%M',
filename=log file,
filemode="a")

183

database.py

logger = logging.getLogger ('MySQL') # name of the logger

all further logging must be called by logger.'level' and not
logging. 'level'

1f not, the logging will be displayed as 'ROOT' and NOT 'OPC-N3'

return logger

if name == "

CO2.py)
message level = logging.DEBUG # show ALL the logging messages
Create a file to store the log if it doesn't exist
log file = current working directory + "/log/mysgl-debugging.log"
if not os.path.isfile(log file):
os.mknod(log file)
print ("MySQL DEBUG messages will be shown and stored in '" +
str(log file) + "'")
logger = set logger (message level, log file)
define a Handler which writes INFO messages or higher to the
sys.stderr/display
console = logging.StreamHandler ()
console.setlLevel (message level)
set a format which is simpler for console use
formatter = logging.Formatter ('% (name)-12s: % (levelname)-8s
% (message)s')
tell the handler to use this format
console.setFormatter (formatter)
add the handler to the root logger
logging.getlLogger () .addHandler (console)

__main_ ': # if you run this code directly ($ python3

else: # if this file is considered as a library (if you execute
'seacanairy.py' for example)
it will only print and store INFO messages and above in the
corresponding log file
if store debug messages:
message level = logging.DEBUG
else:
message_ level = logging.INFO
log file = '/home/pi/seacanairy project/log/' + project name + '-
log.log' # complete location needed on the RPI
no need to add a handler, because there is already one in
seacanairy.py
logger = set logger (message level, log file)

all further logging must be called by logger.'level' and not
logging. 'level'
1f not, the logging will be displayed as 'ROOT' and NOT 'MySQL'

Global variables
global connected
connected = False
table created = False
global data in cache

data in cache = False
global db line count
db line count = False

global datafile length
datafile length = False

184

HZS

Connect to the server

print ("Connecting to MySQL database...", end='\r')

def connect (print status=False):
mrrn
Check connection and connect 1if connection is lost
:param print status: decide to show connection status or not
c:return: True (connected) or False (Not connected)
mrrn
global mydb # share variable through this code file
global connected

print ("Checking MySQL connection status...", end='\r'")
if connected: # if connection has already been established before
return connected
else: # 1if first execution, or 1f connection has failed last time
try:
mydb = mysqgl.connector.connect (
host=host,

user=user,
password=password,
database=db name)
connected = mydb.is connected()
if connected:
if print status:
logger.info ("Connected to database for online data
storage")
return connected
else:
if print status:
logger.warning (
"No connection to database. Check internet status
and database information in the settings")
return connected
except:
if print status:
logger.error ("Failed to connect to database (" +
str(sys.exc info()) + ")")
connected = False
return connected

def create new table(header list, header type):
Create a new table in the database
:param header list: list of all the column headers
creturn:
global connected
global table created

header name = str(header 1list[0]) + " " + header typel0]
for i in range(l, len(header list)):
header name += ", " + header list[i] + " " + header type[i]

if connect () :
try:
print ("Creating database table '" + str(table name) + "'...",
end="\r")

185

database.py

mycursor = mydb.cursor ()

mycursor.execute ("CREATE TABLE IF NOT EXISTS " +
str(table name) + " (" + header name + ")")
logger.info ("Table (already) created (" + str(table name) +

ll)ll)
table created = True
return True

except:
logger.error ("Failed to create new table in the database (" +
str(sys.exc info()) + ")")

connected = False
return False

def number of lines in db():
mrrn
Count the number of lines 1in the current table
:return: number of lines
mrrn
global connected
try:
mycursor = mydb.cursor ()
mycursor.execute ("SELECT COUNT (*) FROM " + str(table name) + " '")
result = mycursor.fetchone ()
print ("There is already", result[0], "lines in db")
return result[0]
except:
connected = False
logger.error ("Failed to count the number of lines in the database
(" + str(sys.exc_info()) + ")")
return 0

def upload data(header list, list of lines):

mrrn

Append data to the table in the database

:param header list: List of the headers in which to write some data

:param data: List containing the data to fill in those headers, in good
order

:return: True or False (success or failure)

global db line count

Convert header list in string

Necessary to create the MySQL function

header name = str(header 1ist[0])
for i in range(l, len(header list)):
header name += ", " + str(header list[i])
header name = header name.replace('"', ''") # no guillemet for header

creation (see MySQL theory)

print ("Header name is:'", header name)
print ("Len header is:", len(header 1list))
print("len of lines to send is:", len(list of lines))

for i in range(len(list of lines)):
Create data string from list
to write = []
for j in list of lines[i]:
if isinstance(j, list):
to write += jJ
else:

186

HZS

to write += []]

to upload = '"' + to write[O0] + '"' # the first one will always be
the datetime, requires guillemets

for j in range(l, len(to write)):

if to write[j] == '-' or to write[j] == 'error' or to write[]]
== '-\n' or to write[j] == 'error\n' or \
to write[j] == 'no fix':
to upload += ',NULL'
else:
try:
to upload += ', ' + str(float(to write[j].replace('\n',
"))
except:
to upload += ', "' + str(to write[j]).replace('\n', '")
+ T
print ("To upload is:", to upload)
print ("Len to upload is:", len(data))
sql = "-"
print ("Sending", str(i) + '/' 4+ str(len(list of lines)), " lines to
MySQL database...", end='\r')

if "0x00" in to_ upload: # if line in file is corrupted, skip this
line and go ahead
try:

sgql = "INSERT INTO """ + str(table name) + " "

mycursor = mydb.cursor ()

mycursor.execute (sqgl)

mydb.commit ()

db line count += 1 # one line sent, database is now one
line bigger

except:
pass
continue
try:

print ("INSERT INTO " + str(table name) + "' (" + header name
+ ") VALUES (" + str(to upload) + ")")

mycursor = mydb.cursor ()

sgql = "INSERT INTO " + str(table name) + " (" + header name +
") VALUES (" + str(

to upload) + ")"
mycursor.execute (sql)
mydb.commit ()
db line count += 1 # one line sent, database is now one line

bigger
except:

logger.error ("Failed to save data into the database (" +

str(sys.exc _info()) + "; line was: ", str(sql),
")

sgl = "INSERT INTO " + str(table_name) + "o

mycursor = mydb.cursor ()

mycursor.execute (sql)

mydb.commit ()

db line count += 1 # one line sent, database is now one line
bigger

print ("

", end="\r")
print (len(list of lines), "line(s) uploaded on the database")

187

database.py

def csv_file length():

Get data file length

creturn: data file length

global datafile length

file = open(current working directory + "/" + str(project name) + "/" +
str(project name) + "-data.csv", 'r'")

datafile length = 0

for line in file:

if line != "\n":
datafile length += 1

file.close()

del file # remove from memory

return datafile length - 1 # minus 1 for the column header line

def update (header list, header type, data to_add):
Upload data on the database 1f possible
rreturn:
global table created
global db_line count
global datafile length
global connected

if not datafile length:
datafile length = csv_file length()
print("file length is:", datafile length)

if connect () : # check connection, and go ahead if ok
if not table created:
try:
table created = create new table (header list, header type)
except:
print ("Impossible to create table (" + str(sys.exc_info())

connected = False
return # impossible to store data if table doesn't exist
if not db line count:
db line count = number of lines in db()
print("db length is:", db_line count)

for i in range(l, len(data to_add)):
if type(data to add[i]) == str:
in case of any sensor error, 1t return either "-" or
"error"
a float value could become a string, leading to database
failure
data to add[i].replace('-"', 'NULL').replace('error',
'NULL'") .replace('no fix', 'NULL'")
in MySQL, NULL means 'empty'

if db_line count == datafile length: # if the same amount of data
in the db and in the csv file
upload data (header list, [data to _add]) # send only the newest
data
else:

logger.info ("Sending pending data to MySQL database")
to upload = []

188

HZS

csv_file = open (
current working directory + "/" + str(project name) + "/"
str (project name) + "-data.csv'", 'r')
csv_lines = csv_file.readlines() # load all the lines in the
memory

csv_file.close()
for x in range(db_line count + 1, datafile length + 1):

to upload += [csv_lines[x].split(',"')]
for i in range(1l1, len(csv_lines)):

if type(data to add[i]) == str:
csv_lines[i].replace('-"',

'"NULL') .replace('error', 'NULL')

else:

to upload += [data_ to_ add]

upload data (header list, to upload)

del csv_lines # remove this huge variable from RAM
del csv_file

return

datafile length += 1

1f this function is executed, it means that new data have been taken
therefore, we know the data file will have one line more

this way, we avoid loading each time the csv file

same increment after every database upload

189

+

Annexe 11
seacanairy_settings.yaml

SEACANAIRY CONFIGURATION FILE

Recommendations
do not change the file syntax
settings must either be Yes or No
numbers must be integer (without decimals)
After changing any settings, check that the Software still work

Seacanairy settings:

Name of the folder and database table in which the log and data files
will be stored:

WARNING:

Sampling session name: "essai-17-08-bis"

Amount of time between each consecutive measurement

Sampling period: 60 # seconds

Activate M&C air pump: Yes

Air pump minimum running time: 5 # seconds per loop

MySQL database settings:
Activate database upload: Yes
Store debug messages (important increase of logs): No
Host: "remotemysgl.com"
User: "4tgGwNUHei"
Password: "iz3EKsfjBU"
Database name: "4tgGwNUHei"

CO2 sensor:

Activate this sensor: Yes

Automatic sampling frequency (number of sample during the above sampling
period): 1

Amount of time required for the sensor to take the measurement: 5 #
seconds (default value: 10 seconds)

Store debug messages (important increase of logs): No

Number of reading attempts: 6 # default value: 6

OPC-N3 sensor:

Activate this sensor: Yes

Amount of time at which the fan keep running to refresh the air inside
the sensor casing

Flushing time: O

Amount of time at which the laser is kept on and measure the air

This period will be multiplied by 2 in practice because the sensor
automatically take a

190

HZS

first measurement in high gain and then another one in low gain mode

Sampling time: 4

Fan speed: 100 # 0 = the slowest, 100 = the fastest

In case of data transmission error, take another sample (Yes) or

read the data again even if sampling time is really short (No)

Take a new measurement if checksum is wrong (avoid shorter sampling
periods when errors): Yes

Store debug messages (important increase of logs): No

Air flow sensor:
Activate this sensor: Yes
Store debug messages (important increase of logs): No

GPS:
Activate this sensor: Yes
Store debug messages (important increase of logs): No

AFE Board:
Activate this sensor: Yes
Store debug messages (important increase of logs): No
Perform multiple readings and average them to reduce noise
Absorption time between air pump stop and reading: 2
Noise reduction - number of reading averaged: 4
Reading occurs after minimum running time

191

Annexe 12
AFE calibration

Files are similar for other gas sensors (SOz; NO,, CO, OX, and temperature).

Calibration information:

Name: "Lukas"

Version number: "1.0"
WE SENS: 0.2776
WEO e: 305.5
AEO e: 301
WEO s: -28.24
AEO s: 25.76
WEO: 277.26
AEO: 326.76

0}
o)
)
X
(1
0}

192

Annexe 13

set_system_ time.sh

#!/bin/sh
printf "Check the system time: "
date
printf "Is the current date and time correct? [Y/n] " ; read -r answer
if [Sanswer == "Y"] ;
then
printf "Exiting time setting"
sleep 1
exit
fi
if [Sanswer == "n"] ;
then

printf "RTC time is: "
sudo hwclock -r

printf "Is that time correct? [Y/n] " ; read -r answer
fi
if [$Sanswer == "Y"] ;
then

printf "Applying RTC time to the system"
sudo hwclock -s
printf "\nSystem time is now "
date
printf "Exiting this shell script\n"
sleep 1
exit
fi
if [$Sanswer == "n"] ;
then
printf "Is the computer connected to the internet? [Y/n] " ; read -r
answer
if [$Sanswer == "Y"] ;
then
printf "Let some time to the system to get time from the internet"
printf "\nShell script will close\nExecute this script again in one
minute\n"

sleep 5
exit
fi
if [Sanswer == "n"] ;
then
printf "Type hereafter the date in the following format: YYYY-MM-DD
(2001-09-11): " ; read -r date input

sudo date +%F -s "$date input"

193

set_system_time.sh
printf "Type now the current time in the following format: hh:mm:ss
(12:30:55): " ; read -r time_ input
sudo date +%T -s "$time input"
printf "Date and Time are now: "
date
printf "\nWriting current time inside RTC..."
sudo hwclock -w
printf "Exiting this shell script\n"
sleep 1
exit
fi
fi
exit

194

Annexe 14

Graph from the measuring
device

Several samplings has been achieved using the Seacanairy in its final stage. Following

graphs comes from one of those sampling sessions.

1 Temperature

Temperature measured in a garden in the countryside
(Bousval, Belgium) on the 21th August 2021

45
40
35
30

25 Temperature_OPC

temperature_C
20

Temperature
15

10

0
12:00:00 12:30:00 13:00:00 13:30:00 14:00:00 14:30:00

Figure 78 Graph of the temperature measured in a garden in the countryside

Source: own work, using the Seacanairy

195

Graph from the measuring device

2 Particulate matter

Particulate Matter sampled in a garden in the countryside
(Bousval, Belgium) on the 21th August 2021

40
35
30

25
—PM_1

20 ——PM 25

1s ——PM_10

— sample_flow_rate_OPC
10 }

N
5 T~ & "t N A
0 P A A’ a J! JE&! k
12:00:00 12:30:00 13:00:00 13:30:00 14:00:00 14:30:00
-5

Figure 79 Graph of particulate matter sampled in a garden in the countryside

Source: own work, using the Seacanairy

196

HZS

3 Gas sensors

Gas concentration measurements in a garden in the
countryside (Bousval, Belgium) on the 21th August 202

500
400
300
200 NO2_ppb
OX_ppb
100 —3502_ppb
e CO2_ppb
0 = CO2_average
12:00:00 12:30:00 13:00:00 14:00:00 14:3Q:00
-100
-200
-300

Figure 80 Graph of gas concentration in a garden in the countryside

Source: own work, using the Seacanairy

197

Graph from the measuring device

4 Air flow

Flow rate measurement of the Seacanairy while sampling in a
garden in the countryside (Bousval, Belgium) on the 21th
August 2021

5
MWVWWWMW\AA sample_flow_rate_OPC

flow_slm

1

0
12:00:00 12:30:00 13:00:00 13:30:00 14:00:00 14:30:00

Figure 81 Graph of the flow rate measurement of the Seacanairy while sampling in a garden in the countryside

Source: own work, using the Seacanairy

198

HZS

5 SO2 peak when a nearby lawn tractor passes

The carbon oxides peak is generated by the passage of a lawn tractor nearby.

Gas concentration measurements on a terrace
in the countryside (Bousval, Belgium) on the
21th August 2021

500
400
300
NO2
200 . - 02_ppb
OX b
100 PP
= S02_ppb
0 CO2_ppb
14:00:00 14:30:00 15:00:00 15:30:00 16:00:00 16:30:00 17:00:00 PP
-100 CO2_average
-200
-300
-400

Figure 82 Graph of gas concentration measurements on a terrace in the countryside

Source: own work, using the Seacanairy

199

Bibliography

[5]

[9]

[10]

[11]

[12]

[13]

Alchemy Power Inc. (2020) ‘Pi-16ADC for Raspberry Pi™. https://www.alchemy-
power.com/wp-content/uploads/2020,/02/16ADC20200203-1-DS.pdf

Alphasense Ltd (2019) ‘Alphasense User Manual OPC-N3 Optical Particle Counter’.

Alphasense Ltd and Mark Giles (2019) ‘Supplemental SPI information for the OPC-
N3’

Cburnett (2006) English: A single master and three slaves on a Serial Peripheral Interface
(SPI) bus. https://commons.wikimedia.org/wiki/File:SPI_three_slaves.svg (Accessed 17
May 2021).

‘Different Types Of Cable Lugs With PDF File’ (2019) Engineering Discoveries.
https://engineeringdiscoveries.com/different-types-of-cable-lugs-with-pdf-file/ (Accessed
19 August 2021).

Dinh, T.-V., Choi, I.-Y., Son, Y.-S. and Kim, J.-C. (2016) ‘A review on non-dispersive
infrared gas sensors: Improvement of sensor detection limit and interference

correction’. Sensors and Actuators B: Chemical, 231, pp. 529-538.
doi:10.1016/5.snb.2016.03.040

Dowker, K. P. and Hardwick, K. (2008) ‘Effect of tubing type on gas detector sampling
systems (RR635)’. https://www.hse.gov.uk/research/rrpdf/rr635.pdf

E+E Elektronik (2020) ‘Utilising the E2 Interface on EE894’.
https://downloads.epluse.com/fileadmin/data/product/ee894/Ultilising_E2_Interface
_EE894_AN1808-1.pdf

E+E Elektronik Ges.m.b.H. (n.d.) ‘CO2 Module EE894 Protocol Description 12C’.
https://downloads.epluse.com/fileadmin/data/product/ee894/TUG_EE894_12C.pdf

‘EE894 - CO2 Module Measures Four Climate Parameters’ (n.d.)
https://www.epluse.com/en/products/co2-measurement/co2-sensor/ee894,/

‘EE894 datasheet’ (n.d.)
https://downloads.epluse.com/fileadmin/data/product/ee894/datasheet. EE894.pdf

‘FEP (fluorinated ethylene propylene) - Polyfluor’ (n.d.)
https://www.polyfluor.nl/en/materials/fep/ (Accessed 1 May 2021).

Haider, A., Robert, M. and Schwarz, R. (n.d.) ‘Specification E2 Interface’.
http://downloads.epluse.com/fileadmin/data/sw/Specification_E2_Interface.pdf

200

HZS

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

Hinds, W. C. (1999) Aerosol Technology: Properties, Behavior, and Measurement of Airborne
Particles. John Wiley & Sons.

PC’ (2021) Wikipedia.
https://en.wikipedia.org/w/index.php’title=1%C2%B2C&oldid=1019929433
(Accessed 22 May 2021).

‘Installing packages using pip and virtual environments — Python Packaging User
Guide’ (n.d.) https://packaging.python.org/guides/installing-using-pip-and-virtual-
environments/ (Accessed 9 May 2021).

‘JavaScript Object Notation’ (2021) Wikipédia.
https://fr.wikipedia.org/w/index.php!title=JavaScript_Object_Notation&oldid=17963
7222 (Accessed 13 May 2021).

Lindegaard, K.-P. (n.d.) ‘smbus2 0.4.1 Documentation’.
https://github.com/kplindegaard/smbus2 (Accessed 15 May 2021).

MATT (2018) ‘Introducing the Raspberry Pi 3 B+ Single Board Computer’. Raspberry Pi
Spy. https://www.raspberrypi-spy.co.uk/2018/03/introducing-raspberry-pi-3-b-plus-
computer/ (Accessed 10 May 2021).

M&C TechGroup Germany GmbH (n.d.) ‘Instruction manual - Bellows pump series
MP®:-F’. https://www.mc-techgroup.com/manuals/M_MPF_EN.pdf

MOCQ, F. (2017) ‘Le port série du Raspberry Pi 3 : pas simple " Framboise 314, le
Raspberry Pi a la sauce francaise.... https://www.framboise3 14.fr/le-port-serie-du-
raspberry-pi-3-pas-simple/ (Accessed 25 May 2021).

MOCQ, F. (2019) ‘Utiliser le port série du Raspberry Pi 3 et du Pi Zero’. Framboise 314,
le Raspberry Pi a la sauce francaise.... https://www.framboise314.fr/utiliser-le-port-serie-
du-raspberry-pi-3-et-du-pi-zero/ (Accessed 25 May 2021).

‘OPC-N3 Particle Monitor’ (n.d.) https://www.alphasense.com/WEB1213/wp-
content/uploads/2019/03/OPC-N3.pdf

‘Particulates | Alphasense’ (2015) Alphasense | The Sensor Technology Company.

https://www.alphasense.com/index.php/products/optical-particle-counter/ (Accessed
17 April 2021).

‘Peli Storm iM2720 Case Call 01902 324734 For Best Prices’ (n.d.)
https://www.waterproof-cases.co.uk/product/peli-storm-im2720-case/ (Accessed 21
August 2021).

Pol Cuvelier (2021) ‘Evening spent searching for a solution concerning the OPC-N3
and the electric pump’.

‘PTFE (polytetrafluoroethylene) - Polyfluor’ (n.d.)
https://www.polyfluor.nl/html/index.php’page_id=86&language_id=2 (Accessed 1
May 2021).

201

Bibliography

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

(36]

[37]

202

‘Raspberry Pi UART Communication using Python and C | Raspberry Pi’ (n.d.)
https://www.electronicwings.com/raspberry-pi/raspberry-pi-uart-communication-using-

python-and-c (Accessed 25 May 2021).

Saint-Gobain (n.d.) ‘“Tygon products for electronics purpose’.
https://www.processsystems.saint-gobain.com/products/electronics (Accessed 10 May

2021).

Shugar, G. J., Ballinger,]. T. and Dawkins, L. M. (1996) Chemical technicians’ ready
reference handbook 4th ed. New York: McGraw-Hill.

‘SMBus Protocol - kernel.org’ (n.d.) The Linux Kernel Archives.
https://www.kernel.org/doc/Documentation/i2c/smbus-protocol (Accessed 15 May
2021).

Sousan, S., Koehler, K., Hallett, L. and Peters, T. M. (2016) ‘Evaluation of the
Alphasense Optical Particle Counter (OPC-N2) and the Grimm Portable Aerosol
Spectrometer (PAS-1.108)’. Aerosol science and technology : the journal of the American
Association for Aerosol Research, 50(12), pp. 1352-1365.
doi:10.1080/02786826.2016.1232859

‘Technical User Guide - Protocol Description 12C’ (n.d.)
https://downloads.epluse.com/fileadmin/data/product/ee894/TUG_EE894_12C.pdf

Thoms, V. (n.d.) spidev: Python bindings for Linux SPI access through spidev. Python
http://github.com/doceme/py-spidev (Accessed 23 May 2021).

‘UART configuration - Raspberry Pi Documentation’ (n.d.)

https://www.raspberrypi.org/documentation/configuration/uart.md (Accessed 8 April
2021).

‘Updating and upgrading Raspberry Pi OS - Raspberry Pi Documentation’ (n.d.)

https://www.raspberrypi.org/documentation/raspbian/updating.md (Accessed 9 May
2021).

Van der Borght, L. (2020) ‘Constructie en kalibratie van een toestel voor het meten van
de luchtkwaliteit aan boord van zeeschepen’. Antwerp Maritime Academy.

	Foreword
	Abstract
	Résumé
	Table of content
	Table of figures
	Table of tables
	List of abbreviations
	Introduction
	Chapter 1 The Sensors of the Seacanairy
	1 E+E Elektronik EE894 CO2 sensor
	1.1 Sensor communication and wiring
	1.2 Compatible wire and sockets
	1.3 Software function list
	1.4 Software schematic
	1.4.1 General procedure for reading measurements
	1.4.2 Procedure for reading and writing bytes inside the sensor custom memory

	1.5 Air measurement and data reading timing
	1.6 Faced issues during the development
	1.6.1 Consecutive I²C write and read
	1.6.2 Addition of other I²C devices to the central computer
	1.6.3 inability to manually trigger a measurement
	1.6.4 Continuous indication of temperature error on the status byte
	1.6.5 Checksum error during measurement readings

	2 OPC-N3 particulate matter sensor
	2.1 Data returned by the sensor
	2.2 Sensor communication and wiring
	2.3 Software function list
	2.4 Software schematic
	2.4.1 SPI communication initiation
	2.4.2 Histogram reading
	2.4.3 Perform a particulate matter measurement

	2.5 Faced issues
	2.5.1 Simultaneous reading and writing of data
	2.5.2 Sensor Slave Select line wiring
	2.5.3 Frequency conflict between the OPC-N3 SPI and the GPS UART

	2.6 Interference between M&C air pump and SPI communication
	2.6.1 Isolation of the pump from the 220V line via a noise reducer
	2.6.2 Increasing the power supply capacity
	2.6.3 Addition of a rest period between starting the pump and the first communication with the sensor

	3 The 4-AFE gas sensors board from Alphasense
	3.1 Wiring of the 4-AFE board and the Analog to Digital Converter (ADC)
	3.2 Software function list
	3.3 Analogic signal noise reduction
	3.4 Calibration

	4 The GPS receiver
	4.1 Wiring of the GPS receiver
	4.2 Software function list
	4.3 Faced issues
	4.3.1 Frequency conflict between the OPC-N3 SPI and the GPS UART
	4.3.2 Random UART port opening problem

	5 Sensirion Mass Flow Meter
	6 The RTC (real-time clock) – DS3231
	6.1 Faced issues
	6.1.1 I2C pull-up resistors
	6.1.2 Integration on the PCB

	Chapter 2 Combining components into a measuring device
	1 Building the device into a transportable suitcase
	1.1 Three aluminium plates in the casing
	1.2 The bottom plate
	1.3 The cover plate in the case lid
	1.4 The top plate
	1.5 Drilling the plate to fix it on the frame

	2 Connecting all sensors with tubes
	2.1.1 The use of PTFE tubes
	2.1.2 Air pump
	2.1.3 The particulate matter sensor (OPC-N3) box
	2.1.4 The CO2 sensor box
	2.1.5 The Sensirion mass flow meter
	2.1.6 The Alphasense 4-AFE gas sensor
	2.2 The electrical connection of all hardware components
	2.2.1 Electric noise on the 220V line

	3 Central computer
	3.1 The Raspberry Pi
	3.2 The Analog to Digital Converter
	3.3 Printed Circuit Board (PCB)
	3.3.1 General procedure for designing a PCB
	3.3.2 Seacanairy wiring
	3.3.3 The connection between the Analog to Digital Converter (ADC) and the custom circuit board
	3.3.4 Tips for a successful printed circuit

	Chapter 3 Setting up the development environment on a stand-alone computer
	1 Set up the development environment on a personal computer
	1.1 Development software – PyCharm
	1.2 New project creation
	1.3 Git repository and GitHub account
	1.4 Commit and Push files to GitHub
	1.5 Libraries installation
	1.6 Connect to the Raspberry Pi using TeamViewer
	1.7 Transfer files from or to the Raspberry Pi

	2 Set up the development environment on the Seacanairy central computer
	2.1 Update the Raspberry Pi
	2.2 The virtual environment on the Raspberry Pi
	2.2.1 Create a Virtual Environment
	2.2.2 Virtual environment activation
	2.2.3 Activate the virtual environment in Thonny Python IDE

	2.3 Install Python libraries on the Raspberry Pi
	2.4 Testing code on the Raspberry Pi
	2.4.1 Copy-pasting in Thonny Python IDE
	2.4.2 TeamViewer File Transfer and python3 in console

	3 Console tip and tricks
	4 Raspberry Pi password
	Chapter 4 Software of the Seacanairy
	1 Overall Seacanairy software structure
	2 Information display and logging functions
	3 Settings page
	3.1 Choice of file format
	3.2 Available settings

	4 MySQL Database
	5 Global Seacanairy script
	5.1 Manual operation through the touchscreen
	5.2 Autostart at boot

	6 Software files and folders
	6.1 List of files

	Conclusion
	Annexe 1 List of files
	Annexe 2 Case panels dimensions
	Annexe 3 Schematic of the Seacanairy wiring
	Annexe 4 Seacanairy PCB
	Annexe 5 CO2.py
	Annexe 6 OPCN3.py
	Annexe 7 AFE.py
	Annexe 8 GPS.py
	Annexe 9 flow.py
	Annexe 10 database.py
	Annexe 11 seacanairy_settings.yaml
	Annexe 12 AFE calibration
	Annexe 13 set_system_time.sh
	Annexe 14 Graph from the measuring device
	1 Temperature
	2 Particulate matter
	3 Gas sensors
	4 Air flow
	5 SO2 peak when a nearby lawn tractor passes
	Bibliography

